
1-i

User Manual

MARXAN
with Zones

Version 2.01 & above

Issued: November 2020

2020 update by: Norma Serra-Sogas , Alessia Kockel , Brooke

Williams , Edward T. Game , Hugh P. Possingham &

Jennifer McGowan

Originally written in 2008 by: Matthew Watts, Carissa Klein,

Romola Stewart, Ian Ball & Hugh Possingham

https://orcid.org/0000-0002-5415-6081
https://orcid.org/0000-0003-3134-1919
https://orcid.org/0000-0002-0692-7507
https://orcid.org/0000-0003-4707-9281
https://orcid.org/0000-0001-7755-996X
https://orcid.org/0000-0001-9061-3465

Marxan with Zones User Manual 1-ii

Suggested cita tion for this m anual:

Serra-Sogas N., Kockel A, Williams, B., Watts, M., Klein, C., Stewart, R., Ball, I., Game, E.,

Possingham, H., & McGowan J. (2020). Marxan with Zones User Manual. For Marxan

with Zones version 2.0.1 and above. The Nature Conservancy (TNC), Arlington,

Virginia, United States and Pacific Marine Analysis and Research Association

(PacMARA), Victoria, British Columbia, Canada.

Citation for Marxan with Zones software:

Watts, M. E., Ball, I. R., Stewart, R. S., Klein, C. J., Wilson, K., Steinback, C., Lourival, R.,
Kircher, L., Possingham, H. P. (2009). Marxan with Zones: Software for optimal
conservation based land- and sea-use zoning. Environmental Modelling and Software,
24(12), 1513-1521.

Marxan with Zones User Manual 1-iii

Preface

About this Manua l

This manual is intended to equip readers with the basic knowledge required to use Marxan

with Zones (Watts et al., 2009), an extension of the Marxan software (Ball et al., 2009). It

covers all the relevant parameters and necessary data inputs, as well as key steps to

successfully execute the program and interpret the outputs. It provides some guidance on

the sorts of problems Marxan with Zones can solve but does not cover the full range of

possible uses and applications. Some case studies and complementary literature are

referenced in the manual to guide readers to additional sources of information and guidance.

Marxan with Zones has the capacity to address complex planning problems with diverse

objectives. We strongly recommend familiarizing yourself with Marxan and its appropriate

use before diving into your first Marxan with Zones exercise. It is important to understand

how both Marxan and Marxan with Zones work to avoid their inappropriate use. Marxan

with Zones can be a very powerful tool, but if misused, it can undermine a great deal of hard

work in collecting and collating good data, not to mention providing misleading advice and

undermining the credibility of the decision support tool for conservation planning and land-

or ocean-use zoning.

Com plem entary Literature

This manual should be used in tandem with the Marxan User Manual and the Marxan Good

Practices Handbook (MGPH), which are available for download from the Marxan website

(https://marxansolutions.org/). Though these manuals focus on standard Marxan, much of

the content and guidance provided are also applicable to Marxan with Zones. Together, these

three manuals should provide the resources needed to undertake skilled and defensible

analysis using Marxan with Zones. In addition, we strongly suggest reading some of the peer

reviewed articles that use Marxan with Zones in various zoning applications – some of which

are cited in this manual. These articles demonstrate what types of questions the software

can answer, how problem definitions are set up, the kinds of data that can be used, and how

different objectives and constraints influence the resulting outputs.

https://marxansolutions.org/

Marxan with Zones User Manual 1-iv

Acknowledgem ents

The ongoing development of Marxan software would not be possible without the financial

support of generous donor organisations from around the world. Early supporters were

Ecotrust, who provided substantial funding for the development of the software to support

the planning of the California Marine Life Protection Act. In addition, the Australian National

Heritage Trust contributed substantial funds to the development of the software and the

underpinning research program. We also acknowledge initial funding from the Australian

Applied Environment Decision Analysis centre. This updated manual was generously

supported by The Nature Conservancy.

Discla im er

The planning scenarios presented in this manual are all hypothetical. They have been

developed exclusively for demonstration purposes.

Marxan with Zones User Manual 1-v

Table of Contents

1 Introduction ... 1- 1

1.1 What is Marxan with Zones? ... 1-1

1.1.1 The Conceptual Case for Marxan with Zones .. 1-3

1.2 Marxan with Zones in Practice ... 1-4

1.3 Mathematical Formulation of Marxan with Zones ... 1-6

1.4 How Does Marxan with Zones Finds Good Solutions? .. 1-8

2 Download, Software Requirem ents & Supporting Software 2- 10

2.1 Software Download ... 2-10

2.2 System Requirements ... 2-10

2.3 Supporting Software ... 2-11

2.3.1 Zonae Cogito.. 2-11

2.3.2 CLUZ (Conservation Land-Use Zoning) .. 2-12

2.3.3 ArcMarxan and QMarxan plugins for ArcGIS and QGIS 2-12

3 Getting Started ... 3- 13

3.1 Defining a Zoning Problem ... 3-13

3.2 An Example Case Study for Defining a Marxan with Zones Problem 3-14

3.3 Key Steps of a Marxan with Zones Analysis ... 3-20

4 Pre-Processin g of Data .. 4- 22

4.1 Overview of Data Preparation ... 4-22

4.2 Dividing the Planning Region into Planning Units .. 4-22

4.3 Determining the Distribution of Features & Costs .. 4-23

5 Input F iles, Param eters & Variables ... 5- 25

5.1 Overview of Input Files .. 5-25

5.2 Input Files Management & Format .. 5-26

5.3 Required Input Files .. 5-28

5.3.1 Input Parameter File (input.dat) ... 5-28

5.3.2 Feature File (feat.dat) .. 5-42

5.3.3 Planning Unit File (pu.dat) .. 5-48

5.3.4 Planning Unit versus Feature File (puvfeat.dat) ... 5-51

Marxan with Zones User Manual 1-vi

5.3.5 Zones File (zones.dat) ... 5-53

5.3.6 Costs File (costs.dat) .. 5-54

5.3.7 Zone Cost File (zonecost.dat) ... 5-55

5.4 Optional Input Files ... 5-58

5.4.1 Boundary Length File (bound.dat) ... 5-58

5.4.2 Zone Boundary Cost File (zoneboundcost.dat) ... 5-62

5.4.3 Planning Unit Zone File (puzone.dat) ... 5-67

5.4.4 Planning Unit Lock File (pulock.dat) ... 5-68

5.4.5 Zone Target (zonetarget.dat) & Zone Target 2 (zonetarget2.dat) Files 5-69

5.4.6 Zone Contribution (zonecontrib.dat) & Zone Contribution 2

(zonecontrib2.dat) Files ... 5-74

6 Running the Software ... 6- 78

7 Outputs .. 7- 79

7.1 Overview of Output Files ... 7-79

7.2 Output File Management & Format ... 7-79

7.3 Screen Output .. 7-80

7.4 Output Files .. 7-84

7.4.1 Solution for Each Run .. 7-85

7.4.2 Best Solution ... 7-85

7.4.3 Missing Values for Each Run ... 7-87

7.4.4 Missing Value Information for the Best Run .. 7-88

7.4.5 Summary Information ... 7-89

7.4.6 Scenario Details ... 7-91

7.4.7 Summed Solution .. 7-91

7.4.8 Solution Matrix... 7-94

7.4.9 Penalty File .. 7-94

7.4.10 Screen Log File .. 7-95

7.4.11 Zone Connectivity Sum .. 7-95

8 Good Practices .. 8- 96

8.1 Overview .. 8-96

8.2 Experimentation ... 8-96

8.3 Visual Inspection .. 8-96

Marxan with Zones User Manual 1-vii

8.4 Sensitivity Analyses ... 8-97

8.5 Communicating Results ... 8-97

9 Courses & Train ing ... 9- 100

References .. 9- 101

Appendix A - Troubleshooting ... 9- 105

A-1 Invalid input file (input.dat) ...9-105

A-1.1 “Input file input.dat not found” ...9-105

A-1.2 “Entering in the data files; P lanning Unit files input/pu.dat has not

been found” ..9-105

A-1.3 “Missing planning unit id for line 1” ..9-106

A-1.4 “Error: Cannot save to log file” ...9-106

A-1.4 “Species file input/feat.dat has not been found”9-107

A-1.5 “PU v Species file input/ not found” ...9-108

A-2 Invalid planning unit file (pu .dat) ..9-108

A-2.1 Marxan with Zones crashes ..9-108

Appendix B - Marxan with Zones Objective Function and A lgorithm s used 9- 109

B -1 The Objective Function ..9-109

B -2 A lgorithm s Method ..9-114

Marxan with Zones User Manual 1-viii

List of F igures

Figure 1. Conceptualization of a Marxan with Zones problem ... 3-13

Figure 2. Example solution for Rottnest Island case study .. 3-17

Figure 3. Example of a Marxan with Zones analysis framework (adapted from MGPH) ... 3-20

Figure 4. Three types of planning units that could be used in Marxan with Zones............. 4-22

Figure 5. GIS workflow for determining the distribution of features and costs 4-24

Figure 6. Recommended set up for a Marxan with Zones database folder.............................. 5-27

Figure 7. An example of the Input Parameter File (input.dat). Left image shows the first half

of the file, and right image the second half of the file .. 5-29

Figure 8. An example of the Feature File (feat.dat) .. 5-42

Figure 9. An example of a portion of the Planning Unit File (pu.dat) .. 5-48

Figure 10. An example of a portion of the puvfeat.dat file ... 5-51

Figure 11. An example of the zones.dat file ... 5-53

Figure 12. An example of the costs.dat file ... 5-54

Figure 13. An example of the zonecost.dat file ... 5-56

Figure 14. An example of a portion of the Boundary Length File (bound.dat) 5-58

Figure 15. An example of the Zone Boundary Cost File (zoneboundcost.dat) 5-62

Figure 16. An example of the Planning Unit Zone (puzone.dat) .. 5-67

Figure 17. An example of the Planning Unit Lock File (pulock.dat) ... 5-68

Figure 18. An example of the Zone Target File (zonetarget.dat) ... 5-70

Figure 19. An example of zonetarget2.dat.. 5-71

Figure 21. An example of the Zone Contribution File (zonecontrib.dat).................................. 5-75

Figure 22. An example of the Zone Contribution 2 File (zonecontrib2.dat) 5-75

Figure 24. A successful run in MarxanZone.exe ... 6-78

Figure 25. Example of the screen output with verbosity level 0 (Silent Running) 7-81

Figure 26. Example of the screen output with verbosity level 1 (Results Only) 7-82

Figure 27. Example of the screen output with verbosity level 2 (General Progress) 7-82

Figure 28. Example of the screen output with verbosity level 3 (Detailed Progress) 7-82

Figure 29. An example of a subset of a solution file (e.g., output_r001.csv) 7-85

Figure 30. An example of a missing values file (e.g., output_mv001.csv), shown in two parts

for demonstration purposes .. 7-88

Marxan with Zones User Manual 1-ix

Figure 31. Example of the summary output file (output_sum.dat)... 7-89

Figure 32. Example of the scenario details output file (output_sen.dat).................................. 7-91

Figure 33. Example of a subset of the summed solution output file (output_ssoln.csv) 7-92

Figure 34. Example of a subset of the solution matrix output file

(output_solutionmatrix_zone1.csv) .. 7-94

Marxan with Zones User Manual 1-x

List of Tables

Table 1. Comparison of Marxan with Zones supporting software .. 2-11

Table 2. Objectives for the Rottnest Island multi-use marine park .. 3-14

Table 3. Compatibility matrix for objectives (= somewhat compatible, = not

compatible) .. 3-14

Table 4. Proposed zone categories for Rottnest Island ... 3-15

Table 5. Level of contribution towards meeting objectives for each zone 3-16

Table 6. Information about which costs will be applied in each zone- 3-17

Table 7. Input files for Marxan with Zones .. 5-25

Table 8. Variable names and default values for the Input Parameter File (input.dat)........ 5-30

Table 9. Variable of the Feature File (feat.dat) ... 5-43

Table 10. Variable names and requirements for Planning Unit Fie (pu.dat) 5-48

Table 11. Variable names and requirements for Planning Unit versus Feature File

(puvfeat.dat) .. 5-51

Table 12. Variable names and requirements for the Zones File (zones.dat) 5-53

Table 13. Variable names and requirements for the Costs File (costs.dat) 5-54

Table 14. Variable names and requirements for the Zone Cost File (zonecost.dat) 5-55

Table 15. Variable names and requirements for Boundary Length File (bound.dat) 5-59

Table 16. Variable names and requirements for Zone Boundary Cost (zoneboundcost.dat) 5-

62

Table 17. Variable names and requirements for Planning Unit Zone (puzone.dat) 5-67

Table 18. Variable names and requirements for Planning Unit Lock (pulock.dat) 5-68

Table 19. Variable names and requirements for Zone Target (zoneboundcost.dat) 5-69

Table 20. Variable names and requirements for Zone Target 2 (zoneboundcost2.dat) 5-70

Table 22. Variable names and requirements for Zone Contribution (zonecontrib.dat)..... 5-74

Table 23. Variable names and requirements for Zone Contribution 2 (zonecontrib2.dat) ... 5-

75

Table 25. Basic summary information of each run ... 7-80

Table 26. Output file types and names... 7-84

Table 27. Description of Missing Value File Headers ... 7-87

Table 28. Description of Summary File Headers ... 7-90

Marxan with Zones User Manual 1-xi

List of Inform ation Boxes

Box 1. Key Terms and Definitions.. 1-1

Box 2. Protected Areas Designed via Marxan versus Marxan with Zones 1-3

Box 3. Systematic Conservation Planning ... 1-4

Box 4. Marxan with Zones Score Calculation ... 1-9

Box 5. Toy Problems for Zone Contribution .. 3-18

Box 6. The Development of Input Files .. 5-27

Box 7. Calibration of Feature Penalty Factor (FPF) .. 5-47

Box 8. Calibrating the Zone Boundary Cost File ... 5-64

Box 9. Zones targets setting in Rottnest Island case study .. 5-73

Box 10. Zones contributions setting in Rottnest Island case study .. 5-77

Box 11. Example of Summary Information on the Screen Output .. 7-83

Box 12. How to Visualize the Solution of a Given Run in QGIS or ArcMap 7-86

Box 13. How to visualize the summed solution in QGIS or ArcMap ... 7-93

Marxan with Zones User Manual 1-xii

List of Acronym s

BLM Boundary Length Modifier

FPF Feature Penalty Factor

GIS Geographic Information System

MGPH Marxan Good Practices Handbook

MPH Minimum Proportion Met

MSP Marine Spatial Planning

SCP Systematic Conservation Planning

Marxan with Zones User Manual 1-1

1 Introduction

1.1 What is Marxan with Zones?

Marxan with Zones (Watts et al., 2009) is a free and open source software designed to

support spatial planning for multi-use zones. Marxan with Zones allows for multiple zones,

zoning contributions, costs, and the spatial relationships between zones to all be considered

in spatial optimization. This tool can be applied in various contexts to help identify

configurations of sites (or ‘planning units’) that contribute to a wide range of ecological,

social, cultural, and economic objectives. This makes Marxan with Zones well placed to

support local and regional planning across marine, freshwater and terrestrial areas, where

the goal is often to achieve a balance across a range of competing objectives.

Marxan with Zones is an extension of the Marxan software (Ball et al., 2009), the most widely

used decision support tool for conservation planning. Marxan was designed to address a

particular type of conservation problem, known as the ‘minimum set problem’, where the

goal is to achieve the minimum target amount of conservation features for the smallest

possible cost (see Box 1 for key terms and definitions). To solve this problem, Marxan uses a

simulated annealing algorithm. The algorithm works by minimizing one cost function in the

pursuit of meeting targets for features. With each run, it generates a solution that assigns

each planning unit in the study region as either selected (e.g., protected area) or not selected

(e.g., unprotected area).

Marxan with Zones follows the same ‘minimum set problem’ framework, while:

1. assigning planning units to the most appropriate zone given the problem set-up

(note: zone assignment may change across runs); and

2. allowing the user to incorporate multiple costs in the analysis according to the zone

and the activities that are allowed or not allowed in the zone.

These advanced functions of Marxan with Zones are discussed in Sections 1.1.1 and 3.2.

Box 1. Key Terms and Definitions

 Planning region (also known as planning area, study area or extent): The spatial domain

over which the planning process occurs. This area is divided into smaller planning units.

 Planning units: Spatial units within the entire planning region, which can be defined

using grids, hexagons, or irregular shapes. Each planning unit contains information on

the distribution of features and associated costs.

Marxan with Zones User Manual 1-2

 Zoning framework: The set of rules by which activities are permitted, regulated, or

prohibited for a specific purpose/objective across a planning region.

 Zone: The discrete spatial representation of the zoning framework.

 Feature: The feature for which a target is set for inclusion in one or more zones.

Features can be ecological (e.g. habitats, species, migration routes), socioeconomic

(e.g., farming, fishing, sustainable forestry), and cultural (e.g., heritage sites, dreaming

sites, or traditional use areas).

 Target: The ‘overall target’ is the minimum quantity or proportion of the feature to be

included across all zones.

 Zone target: The minimum quantity or proportion of the feature in the planning region

to be included in a specific zone.

 Zone contribution: A multiplier used to assign differential contributions to meeting the

overall targets across different zones.

 Costs: Values that are minimized in the pursuit of achieving targets. Each planning unit

can be assigned one or more cost. Costs may vary (e.g., land acquisition cost,

opportunity cost, management cost) but should reflect various consequences

associated with allocating a planning unit to a specific zone under the zoning

framework.

 Objective function: The mathematical expression of the Marxan optimization problem

which seeks to meet targets while minimizing costs and keeping solutions compact.

 Feature penalty factor: A multiplier for the penalty applied to the objective function

when a feature target is not met in the current reserve scenario.

 Solution: The binary output of a Marxan with Zones run, where each planning unit is

assigned to a specific zone (this allocation may change across runs).

 Score: The value assigned to each run based on the performance of the solution against

the sum of the planning unit costs, boundary costs, and penalties. The Score is useful

for comparisons.

 Best solution: The solution with the lowest objective function score.

 Selection frequency (also known as ‘summed solution’): The number of times a given

planning unit is assigned to a particular zone across a series of solutions (or ‘runs’).

 Run: The number of repeated times the algorithm is applied to solve the problem and

produce a solution. This is defined by the user (e.g., if Marxan with Zones is set to run

100 times, it will generate 100 solutions, which is considered the best practice number

of runs).

Marxan with Zones User Manual 1-3

1.1.1 The Conceptua l Case for Marxan with Zones

Standard Marxan is designed to solve a two-zone problem, such as identifying areas for

protection. This approach inherently assumes the areas that are not selected - the

“unprotected” zone - contribute nothing to the objectives of the zoning plan. This is

sometimes referred to as the “Scorched Earth” assumption – meaning we get to keep the

biodiversity in the protected zone while none of the biodiversity found in the unprotected

zone counts towards our objectives. In reality, this “unprotected” zone is made up of many

different management areas which regulate activities across the land and sea. For example,

a marine conservation zone is often accompanied by regulated fisheries management zones

and/or community or traditional fishing areas. Biodiversity is generally managed in these

zones to varying degrees and therefore contribute to our objectives in different ways.

Similarly, different zones will impact different industries in different ways and Marxan with

Zones can accommodate those differences in its consideration of costs. For example, the cost

of allocating a planning unit to a marine reserve zone that prohibits fishing, could be a loss

of fishing grounds resulting in less overall catch (i.e., a fishing opportunity cost). Yet this cost

would not apply if the same planning unit is allocated to a multiple use zone where fishing is

permitted.

Marxan with Zones accommodates these considerations and allows users to develop zoning

plans that can account for different conservation, social, cultural and economic objectives

simultaneously. It also helps users explore trade-offs between conflicting objectives (e.g.,

conservation versus socioeconomic objectives), and reduce conflict between different

activities (e.g., mining, forestry, and conservation).

Box 2. Protected Areas Designed via Marxan versus Marxan with Zones

A study in California by Klein et al. (2010) compared marine protected area (MPA)

networks designed via Marxan and Marxan with Zones in terms of the fishing value lost to

each fishery industry. The potential MPA network produced by Marxan had 10-30%

proportion of fishing value lost. However, when Marxan with Zones was used it only led to

2-10% proportion of fishing value lost. The reduction in the impact on fisheries is due to

the inclusion of targets for each fishery and the definition of zones where those targets

can be met within Marxan with Zones.

Marxan with Zones User Manual 1-4

1.2 Marxan with Zones in Pract ice

Marxan with Zones can be applied to address a broad range of spatial planning challenges.

Like Marxan, it is being employed worldwide as a decision support tool for systematic

conservation planning (Box 3), with a growing number of case studies in the scientific and

grey literature show casing its versatility at local, national, and even transnational scales

across terrestrial, freshwater, and marine systems.

Some applications of Marxan with Zones are listed below and you can review additional case

studies at https://marxansolutions.org:

 Designing protected area networks to achieve conservation objectives and resolve

user conflict (e.g., Grantham et al., 2013; Jumin et al., 2018; Parker et al., 2015; Reyers

et al., 2012)

 Land-use planning in multifunctional landscapes (e.g., Law et al., 2017)

 Marine zoning within a broader marine spatial planning process (e.g., Agostini et al.,

2010)

 Zoning for freshwater conservation (e.g., Domisch et al., 2019; Hermoso et al., 2015)

 Exploring trade-offs between conflicting objectives in land-use planning (e.g., Adams

et al., 2016; Fastré et al., 2020), marine conservation planning (e.g., Klein et al., 2010;

Mazor et al., 2014; Ruiz-Frau et al., 2015), and marine spatial planning (e.g., Yates et

al., 2015)

 Addressing considerations of social equity and fairness in conservation planning (e.g.,

Domisch et al., 2019; Gurney et al., 2015; Kockel et al., 2019, 2020; Weeks et al., 2010)

Box 3. Systematic Conservation Planning

Systematic conservation planning (SCP) is a framework for planning and developing

conservation areas to achieve set objectives (Margules & Pressey, 2000; Pressey & Bottrill,

2009). It is a major departure from conventional conservation planning approaches, which

have often been applied to select conservation areas based on urgency, scenery, and ease

of designation (Kukkala & Moilanen, 2013).

SCP is widely considered 'best practice' in conservation because it facilitates a transparent,

inclusive and defensible decision-making process. The importance of these principles for

conservation is discussed in the Marxan Good Practice Handbook (MGPH), available at

www.marxansolutions.org.

https://marxansolutions.org/
http://www.marxansolutions.org/

Marxan with Zones User Manual 1-5

The SCP framework consists of 11 stages (Pressey & Bottrill, 2009):

 Scoping and costing the planning process

 Identifying and involving stakeholders

 Describing the context for conservation areas

 Identifying conservation goals

 Collecting data on socio-economic variables and threats

 Collecting data on biodiversity and other natural features

 Setting conservation objectives/targets

 Reviewing current achievement of objectives

 Selecting additional conservation areas

 Applying conservation actions to selected areas

 Maintaining and monitoring conservation areas

The ninth stage, commonly referred to as ‘spatial conservation prioritization’, involves the

selection of new sites to achieve conservation objectives and is where Marxan software

plays a critical role.

Marxan with Zones User Manual 1-6

1.3 Mathem atica l Form ulat ion of Marxan with Zones

The aim of the Marxan with Zones software is to minimize the total cost of the solution set

subject to meeting the representation targets. This is the Marxan with Zones minimum set

problem, which can mathematically be defined as:

minimize ∑ ∑ 𝑐𝑖𝑘

𝑝

𝑘=1

𝑥𝑖𝑘

𝑚

𝑖=1

+ 𝑏 ∑ ∑ ∑ ∑ 𝑐𝑣𝑖1,𝑖2,𝑘1,𝑘2

𝑝

𝑘2=1

𝑝

𝑘1=1

𝑥𝑖1,𝑘1𝑥𝑖2,𝑘2

𝑚

𝑖2=1

𝑚

𝑖1=1

 (1)

subject to ∑ ∑ 𝑎𝑖𝑗

𝑝

𝑘=1

𝑎𝑖𝑘

𝑚

𝑖=1

𝑥𝑖𝑗 ≥ 𝑡1𝑗 ∀ (2)

and subject to ∑ 𝑎𝑖𝑗𝑥𝑖𝑘 ≥ 𝑡2𝑗𝑘

𝑚
𝑖=1 ∀ 𝑗 𝑎𝑛𝑑 ∀ 𝑗

(3)

where 𝑚 is the number of planning units and 𝑝 is the number of zones (Watts et al., 2009).

The first term of Equation 1 represents the sum of the costs for a configuration of planning

units where each planning unit is allocated to a particular zone and is composed of a control

variable and cost matrix. The control variable 𝑥𝑖𝑘 ∈ {0,1} records which of the 𝑘 zones each

planning unit 𝑖 is allocated to. A value of 1 indicates that the planning unit 𝑖 is allocated to

zone 𝑘, while a zero value means the planning unit 𝑖 is not allocated to zone 𝑘. Each planning

unit can only be allocated to one zone, hence ∑ 𝑥𝑖𝑘 = 1
𝑝
𝑘=1 ∀ 𝑖. The cost matrix 𝑐𝑖𝑘 is the cost

of placing each planning unit 𝑖 in zone 𝑘.

The second term of Equation 1 represents the connectivity cost of a configuration of planning

units assigned to particular zones, and is composed of a connectivity matrix recording the

cost of the connections between planning units 𝑖1 and 𝑖2 if and only if 𝑖1 is in zone 𝑘1 and 𝑖2

is in zone 𝑘2.

In Equation 2, 𝑎𝑖𝑗 is a feature matrix that records the amount of each feature 𝑗 in each

planning unit 𝑖; the parameter 𝑡1𝑗 is a representation target for each feature, 𝑗, that records

the amount of each feature required to be included in the zone configuration. The term 𝑐𝑎𝑗𝑘

is a contribution matrix that records the level of contribution (e.g. level of protection if

planning for a multi-zone protected area) offered to each feature 𝑗 by each zone 𝑘. Typically,

this contribution will be 1 for zones in which the feature achieves full representation, 0 for

zones not suitable for the protection of the feature and an intermediate value for a zone that

offers partial inclusion for a feature. For example, when planning for a multi-zone protected

area network, a conservation feature might enjoy full representation (100% contribution) in

a conservation zone, no representation in zones where natural resources (e.g. timber, fish,

Marxan with Zones User Manual 1-7

etc.) are extracted (0% contribution) and partial protection where ecologically sensitive

natural resource extraction is allowed (0.5% contribution).

In Equation 3, 𝑡2𝑗𝑘 is a zone target matrix that records the amount of each feature 𝑗 required

to be captured in a particular zone 𝑘. For example, the user may specify that a particular

species have at least half of its feature target conserved in full no-take reserves.

If both targets 𝑡1 and 𝑡2 are used, the software attempts to satisfy their requirements

simultaneously. Users should take care to enter targets that can be simultaneously

achievable to avoid situations where the algorithm cannot find an answer.

A feature penalty equation is used to implement the two target constraints in the Marxan

with Zones objective function (5):

∑ 𝐹𝑃𝐹𝑗𝐹𝑅𝑗 (𝐻(𝑠1) (
𝑠1

𝑡1𝑗
) + ∑ 𝐻(𝑠2) (

𝑠2

𝑡2𝑗𝑘
)

𝑝

𝑘=1

)

𝑛

𝑗=1

 (4)

where there are n features under consideration.

The penalty is zero if every feature j has met its targets t1 and t2 in the selected system, and

it is greater than zero if both or one of the targets are not met.

The terms 𝐹𝑃𝐹𝑗 and 𝐹𝑅𝑗 are the feature penalty factor and the feature representation

respectively, which are scaling factors used when a feature has not met its targets. 𝐹𝑃𝐹𝑖 is a

scaling factor which determines the importance of meeting the targets for feature j. 𝐹𝑅𝑗 is

computed as the representation cost of meeting the targets of feature j. This representation

cost is given in terms of the configuration cost plus the connectivity cost (Eq.1) and it is

computed for each feature j.

The shortfalls 𝑠1 and 𝑠2 are the amount of the two different representation targets not met

and are given by 𝑠1 = 𝑡1𝑗 − ∑ ∑ 𝑎𝑖𝑗𝑐𝑎𝑗𝑘𝑥𝑖𝑘 𝑝
𝑘=1

𝑚
𝑖=1 and 𝑠2 = 𝑡2𝑗𝑘 − ∑ 𝑎𝑖𝑗𝑥𝑖𝑘

𝑚
𝑖=1 . They are

reported as a proportion and they equal to 1 when feature j has not met its target and

approached to zero when the representation levels approach the target amounts. The

Heaviside function H ensures that each equation becomes zero when the representation

targets are greater than the target amount.

Marxan with Zones User Manual 1-8

Combining Equations 1 and 4 gives the objective function for Marxan with Zones:

∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘 + 𝑏 ∑ ∑ ∑ ∑ 𝑐𝑣𝑖1,𝑖2,𝑘1,𝑘2

𝑝

𝑘2=1

𝑝

𝑘1=1

𝑥𝑖1,𝑘1𝑥𝑖2,𝑘2

𝑚

𝑖2=1

𝑚

𝑖1=1

𝑝

𝑘=1

𝑚

𝑖=1

+ 𝐹𝑃𝐹𝑗𝐹𝑅𝑗 (𝐻(𝑠1) (
𝑠1

𝑡1𝑗
) + ∑ 𝐻(𝑠2) (

𝑠2

𝑡2𝑗𝑘
)

𝑝

𝑘=1

)

(5)

The objective function gives a value to a configuration of planning units that belong to a

defined number of zones. As in Marxan, Marxan with Zones uses simulated annealing to

minimize the objective function score by varying the control variable 𝑥𝑖𝑘, which tells us

which planning units i is allocated to which zone k. The lower the score, the better we are

meeting set representation targets at the lowest cost.

1.4 How Does Marxan with Zones Finds Good

Solut ions?

The number of possible solutions to even a simple zoning problem is vast. Computer

algorithms have been developed to help find good solutions to this problem. An algorithm is

a mathematical process or set of rules used for problem solving. Within Marxan with Zones,

there are two algorithms that can be used to formulate a solution: simulated annealing and

iterative improvement. Each of these algorithms can be used alone or in combination with

each other. The user can define which algorithm, or combination of algorithms, Marxan with

Zones must use to formulate a solution (See Section 5.3.1.10). More information about these

algorithms is found in Appendix B-2.

Marxan with Zones User Manual 1-9

Box 4. Marxan with Zones Score Calculation

The objective function for Marxan with Zones is:

∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘 + 𝑏 ∑ ∑ ∑ ∑ 𝑐𝑣𝑖1,𝑖2,𝑘1,𝑘2

𝑝

𝑘2=1

𝑝

𝑘1=1

𝑥𝑖1,𝑘1𝑥𝑖2,𝑘2

𝑚

𝑖2=1

𝑚

𝑖1=1

𝑝

𝑘=1

𝑚

𝑖=1

+ 𝐹𝑃𝐹𝑗𝐹𝑅𝑗 (𝐻(𝑠1) (
𝑠1

𝑡1𝑗
) + ∑ 𝐻(𝑠2) (

𝑠2

𝑡2𝑗𝑘
)

𝑝

𝑘=1

)

which can be simplified to:

∑ Cost

𝑃𝑈𝑠

+ 𝐵𝐿𝑀 ∑ 𝐶𝑉𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑃𝑈𝑠

+ ∑ 𝐹𝑃𝐹
𝐶𝑜𝑛

𝑉𝑎𝑙𝑢𝑒

× 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

= 𝑴𝒂𝒓𝒙𝒂𝒏 𝒘𝒊𝒕𝒉 𝒁𝒐𝒏𝒆𝒔 𝑺𝒄𝒐𝒓𝒆

 The first term of the simplified equation is the cost of the zone configuration; the linear

combination of costs of all the planning units within the zone configuration, by zone.

 The second term is the boundary length and fragmentation, which can be used to apply a

control on the level of fragmentation in the zone configuration. In Marxan with Zones,

the multiplicative factor BLM (or boundary length modifier) needs to be set to 1 to allow

the boundary length to be added to the cost. Also, there are multiplicative factors within

the connectivity matrix CV which allow the user to explore different spatial configurations

by applying weights between planning units allocated to different zones. The units of the

weights within the connectivity matrix have to be set in a way that allow the boundary

length to be comparable to the cost (or costs) measure of the planning units. For

example, if the most costly planning unit is 100 and the longest boundary length is 1000,

then the weights within the connectivity matrix should start at 0.1.

 The third term is the total penalty for not achieving feature targets, either the

contribution targets or the zone targets.

More information about the objective function can be found in Appendix B-1.

1 3 2

Marxan with Zones User Manual 2-10

2 Download, Software Requirem ents &

Supporting Software

2.1 Software Download

Marxan with Zones can be downloaded for free from https://marxansolutions.org/software.

The download package includes the latest version of the software, Marxan with Zones

version 2.0.1, along with some supporting materials.

The following files are included in the download package:

 MarZone_x64 (the Marxan with Zones program executable for Windows);

 MarxanZone_v201_Linux64 (the Marxan with Zones program executable for Linux);

 MarZone_v201_Mac64 (the Marxan with Zones program executable for Mac);

 input.dat (an example Input Parameter File);

 a folder labelled ‘Tutorial_Marxan_with_zones”, containing different examples of

required and optional input files for running Marxan with Zones;

These files can be saved anywhere on your computer.

2.2 System Requirem ents

The Marxan with Zones software is available for different operating systems, including

Windows, Mac, and Linux. The system requirements for running Marxan with Zones are

somewhat modest. As a rule of thumb, if a computer is powerful enough to run GIS software,

then it will be adequate for running Marxan with Zones. The number of zones, planning units,

features, and costs that can be incorporated into Marxan with Zones is limited by the

applications memory address space, which is currently 512 GB with a 64 bit computer

operating system and 64 bit C compiler.

The more planning units, features, and optional files you have, the slower Marxan with Zones

will run. Of course, the more powerful your computer (MHz and RAM), the faster Marxan

with Zones will run. Depending on these factors, the time required for Marxan with Zones to

provide good solutions to your problem can range from minutes to days.

https://marxansolutions.org/software

Marxan with Zones User Manual 2-11

2.3 Supporting Software

In this manual, we describe how to run Marxan with Zones as a stand-alone program.

However, there are several user interfaces that can assist in running Marxan with Zones.

These include Zonae Cogito, CLUZ (Conservation Land-Use Zoning), the ArcMarxan plugin

for ArcGIS, and the QMarxan plugin for QGIS. Many users have found these interfaces

particularly helpful for generating certain input files and displaying key outputs. Guidance

on using these programs can be obtained from corresponding websites or user manuals.

Table 1 provides a quick comparison view of the different supporting software/plugins for

Marxan with Zones. A brief description of each tool is provided in the following subsections.

Table 1. Comparison of Marxan with Zones supporting software

 Functionalities

Software

GIS

software

required

Create input

files

Runs Marxan

with Zones

Parameter

calibration

Direct visualisation

of results

Zonae Cogito N/A No1 Yes Yes Yes

CLUZ v.3 QGIS Yes2 Yes Yes No

ArcMarxan

Toolbox

v.2.0.1

ArcGIS Yes2 No No No

QMarxan

Plugin v.2.0.1
QGIS Yes2 No Yes No

1 Users can modify some parameters of Marxan input files.
2 Only Marxan input files, which are also required to run Marxan with Zones.

2.3.1 Zonae Cogito

Zonae Cogito comes from the Latin 'Zonae', meaning zones, and 'Cogito', meaning to think or

reflect on. In other words, the title means to think about zones. The purpose of the software

is to act as a decision support and database management system for the family of Marxan

software. It incorporates open source GIS software components, and is a freely available

software package at https://marxansolutions.org/software. Zonae Cogito was written by

Matthew Watts and Romola Stewart from The Ecology Centre, University of Queensland. The

current version of Zonae Cogito is compatible with 32 bit and x64 Windows operating

systems exclusively.

https://marxansolutions.org/software/

Marxan with Zones User Manual 2-12

2.3.2 CLUZ (Conservation Land-Use Zoning)

CLUZ v.3 (Conservation Land-Use Zoning software) is a QGIS plug-in designed to support

users in the design of protected area networks and other conservation landscapes and

seascapes. It can be used for on-screen planning and acts as a link for Marxan and Marxan

with Zones. CLUZ was developed by Bob Smith and funded by the UK Government’s Darwin

Initiative. The plug-in can be downloaded and installed directly though QGIS and the manual

and tutorials can be accessed at https://anotherbobsmith.wordpress.com/software/cluz/

2.3.3 ArcMarxan and QMarxan plugins for ArcGIS and QGIS

The ArcMarxan v.2.0.1 and QMarxan Toolboxes v.2.0.1 are a free and open source python

plugin for ArcMap 10.2 (and above) and QGIS 3.0 (and above) respectively. These plugins

were created by Apropos Information Systems (https://aproposinfosystems.com/). These

toolboxes are only equipped to support the development of the standard set of input files for

Marxan (i.e., input.dat, feat.dat, pu.dat, puvfeat.dat and bound.dat). Additional files for

running Marxan with Zones (including optional files) cannot be developed using these tools

(see Section 5.1 for alterative methods to generate new files for Marxan with Zones).

Download ArcMarxan at:

https://aproposinfosystems.com/en/solutions/arcgis-plugins/arcmarxan-toolbox/

Download QMarxan at:

https://aproposinfosystems.com/en/solutions/qgis-plugins/qmarxan-toolbox/

https://anotherbobsmith.wordpress.com/software/cluz/
https://aproposinfosystems.com/
https://aproposinfosystems.com/en/solutions/arcgis-plugins/arcmarxan-toolbox/
https://aproposinfosystems.com/en/solutions/qgis-plugins/qmarxan-toolbox/

Marxan with Zones User Manual 3-13

3 Getting Started

3.1 Defin ing a Zoning Problem

Below we describe one approach to framing a zoning planning process. The first step is to

define clear goals and objectives for the zoning framework (Figure 1). The next step is to

identify compatibilities and incompatibilities between the different objectives. This

information will in turn inform decisions on how to set up the problem with respect to how

many zones are needed, what feature data should be collected or compiled, what constraints

and costs should be considered in each zone, and which feature targets and zone

contributions should be set for the selected zones. Following these decisions, the user can

prescribe preferred spatial relationships between zones, such as the degree of spatial

compactness and buffering of zones. Once all steps have been completed, it is common

practice and generally recommended to analyse additional scenarios to examine trade-offs

between objectives.

Figure 1. Conceptualization of a Marxan with Zones problem

Marxan with Zones User Manual 3-14

3.2 An Exam ple Case Study for Defin ing a Marxan

with Zones Problem

This section illustrates a hypothetical case study following the steps outlined in the Section

3.1. The case study focuses on designing a multi-use marine park for Rottnest Island,

Australia. The planning scenario presented here is based on actual biodiversity and human

use data compiled by the Department of Environment and Conservation for the Rottnest

Island Authority, as part of the development of the Rottnest Island Marine Management

Strategy. Yet the scenario is completely hypothetical. It has been developed exclusively for

demonstration purposes and should not be considered as a reflection of the real world.

Step 1: Identifying goals and objectives

The goal for Rottnest Island is to identify a zoning configuration for a multi-use marine park

to conserve marine biodiversity, while maintaining ongoing recreational and fishing

activities. To address this goal, three quantitative objectives are identified for the marine

park (Table 2).

Table 2. Objectives for the Rottnest Island multi-use marine park

Type of Objective Objective

Conservation Conserve at least 40% of each biodiversity feature

Recreation Maintain at least 80% of current areas for non-extractive

recreational and tourism activities

Fisheries Maintain at least 80% of current fishing areas

Step 2: Identifying compatibilities and incompatibilities between objective

The next step is to identify compatibilities and incompatibilities between the objectives (

).

Table 3. Compatibility matrix for objectives (= somewhat compatible, = not compatible)

Activity Objective Fisheries Recreation Conservation

Conservation N/A

Recreation N/A

Fisheries N/A

In this example, conservation and fisheries objectives are identified as incompatible because

fishing activities may cause significant negative impacts to natural resources (e.g., habitat

damage, stock depletion). Recreation activities, such as scuba diving tourism, tend to have

Marxan with Zones User Manual 3-15

less of an environmental impact, but may still result in environmental damage (e.g.,

trampling, anchor damage, fuel/oil spillage) that can hinder conservation outcomes. Yet

recreation and tourism activities often depend on healthy environments, and when managed

well, these activities can contribute to the conservation of natural environments.

Conservation and recreation objectives are therefore identified as ‘somewhat compatible’,

although it is recognized that there should be some areas where no human activities are

allowed to ensure exclusive biodiversity conservation goals are achieved. Likewise, fisheries

and recreation objectives are identified as ‘somewhat compatible’ but given that these

activities may sometimes conflict with one another, separate zoning allocations for these

activities is desirable.

Step 3: Defining number of zones

Based on the information outlined in

, a zoning framework with three management zones is identified for Rottnest Island (Table

4). The zones differ based on their restrictions on human activities.

Table 4. Proposed zone categories for Rottnest Island

Zone Name Zone definition

Zone 1:

Multiple Use
Multiple use zone permits recreational and fisheries activities

Zone 2:

Partial Protection

Partially protected zone only permits recreational activities; fishing is

not allowed

Zone 3:

High Protection

Fully protected no-take zone for biodiversity conservation; no human

activities allowed

Step 4: Identifying feature data based on objectives

In this case study, ecological data represent twenty-eight biodiversity features, including

benthic habitats, coastal landforms and marine species. In addition, human use data was

collected for activities that take place in the waters around Rottnest Island. These activities

are divided into recreational activities (e.g., surfing, diving, recreational boat mooring and

shipwrecks) and fishing activities (e.g., trolling, shore-based fishing, etc.).

Marxan with Zones User Manual 3-16

Step 5: Identifying cost (or costs) based on objectives

This case study includes different costs in each zone based on the activities allowed in the

zones. The following costs are considered in this scenario: planning unit area, distance to

shore and total fisheries catch.

Step 6: Identifying relationships between zones, features and costs

As outlined in Table 2, broad quantitative targets at the planning region level have already

been specified for each objective. It is also possible to use zone specific targets (see Section

5.4.5 for an example), but for simplicity, these are not applied in this example. Instead,

specific zone contributions are defined according to the permitted activities and their

influence of different objectives (Table 5). In this case, some feature targets could be

achieved across a combination of zones, where some zones contribute more than others at

meeting specific targets. For example, areas designated as partial protection zones will

contribute 100% to meeting targets for recreational features, and 20% to meeting

conservation feature targets. If important habitats are placed in Zone 1, we assume they may

be severely impacted by human activities and so we do not consider habitats or species in

that zone towards achieving our conservation targets. See Box 5 for more examples related

to zone contributions.

Table 5. Level of contribution towards meeting objectives for each zone

Activity Objective
Zone 1:

Multiple Use

Zone 2:

Partial Protection

Zone 3: High

Protection

Conservation 0% 20% 100%

Recreation 20% 100% 0%

Fisheries 100% 0% 0%

Table 6 contains information about how costs are applied in each zone. We use a binary

classification to organise the information where a 1 means the cost should be considered in

that zone, while a 0 means it is not relevant in zone. In this scenario, planning unit area cost

is only applied in Zone 3 to minimize the cost associated with monitoring and managing large

amounts of conservation areas. Fisheries catch cost is applied in Zone 2 and Zone 3 because

no fishing activities are allowed in either of each zone. Finally, the inverse distance to shore

cost is applied in Zone 1 and 2 to encourage planning units found near shore to be assigned

to either of the two zones, given that nearshore areas are generally easier to access for fishing

and recreation.

Marxan with Zones User Manual 3-17

Table 6. Information about which costs will be applied in each zone-

Cost
Zone 1:

Multiple Use

Zone 2:

Partial Protection

Zone 3: High

Protection

Planning Unit Area 0 0 1

Fisheries catch 0 1 1

Inverse distance to shore 1 1 0

Step 7: Defining spatial relationship between zones

To minimize conflict between conservation and fisheries, the spatial configuration between

zones is set up to encourage spatial separation between the high protection zone (Zone 3)

and the multi-use zone (Zone 1). This is achieved by calibrating the zone boundary cost (see

Section 5.4.2 for more information) to encourage the high protection zone (Zone 3) to be

buffered by the partial protection zone (Zone 2). An example of a resulting solution (i.e., a

potential zoning system) for Rottnest Island is shown in Figure 2.

Figure 2. Example solution for Rottnest Island case study

Marxan with Zones User Manual 3-18

Box 5. Toy Problems for Zone Contribution

The following toy problems convey how the zone

contribution influences Marxan with Zones solutions.

Example 1 - Coral

In this example, we have single coral feature with a

distribution across 4 planning units (PU) and the amount

of coral found in each PU is specified. Based on the zone

contributions assigned in the table below (same as Table

5), we can examine how this contribution works in

Marxan’s accounting of the overall target achievement,

which we have set at 15 km2 coral habitat.

Placing a planning unit with coral habitat into Zone 1 or Zone 2 means the contribution of

that planning unit towards the overall target for the coral feature is multiplied by the value

specified in table above. In solution 1, the coral target is not met because the partial

protection zones only give 20% of the coral found in PU1 and PU3. In solution 2, PU1 and

PU3 are allocated to the High Protection Zone, so we count the full amount of coral reef

and meet our target.

Marxan with Zones User Manual 3-19

Example 2 - Orangutans & Epiphytes

One of the strengths of Marxan with Zones is that you can

assign unique zone contributions to every feature and

zone in your planning problem. Let’s look at an example

with more than one feature. Here we have two species

found in Borneo: the orangutan (Pongo pygmaeus) and a

rare epiphytic plant (Thrixspermum erythrolomum).

These species share the landscapes with many human

activities and our zoning framework allows for three

zones: 1) Conservation, 2) Sustainable Logging and 3)

Agriculture. Each zone contributes differently to the

species targets. For example, zones that allow for

sustainable logging contribute less for meeting the

plant’s targets (30%) than for orangutans (60%) - as

orangutans can still manage in modified landscapes with less structural complexity while

the epiphytic plant s will have a more difficult time. Both will thrive in a fully protected

area, so the contribution of the Conservation Zone is 100% for both.

Marxan with Zones User Manual 3-20

3.3 Key Steps of a Marxan with Zones Analysis

Sections 3.1 and 3.2 provided guidance for defining a zoning problem. This section presents

four main steps or components of a Marxan with Zones analysis:

1. Pre-processing of data (see Section 4)

2. Setting up the input files and the scenario parameters (see Section 5)

3. Running Marxan with Zones (see Section 6)

4. Viewing and interpreting the outputs (see Section 7 and 8)

Each step of a Marxan with Zones analysis involves a series of tasks (Figure 3). Tasks related

to running the software will generally take the shortest time. Tasks associated with pre-

processing data, developing input files, and interpreting results will often be much more

time-consuming.

Figure 3. Example of a Marxan with Zones analysis framework (adapted from MGPH)

Marxan with Zones User Manual 3-21

It is important to note that the successful use of Marxan with Zones will never involve a once-

off, sequential application of these four steps. Instead, in any given project, these steps

should be repeated numerous times, where the results of each run are used to refine the

details of following runs. Notably, the calibration of key parameters (zone boundary cost,

feature penalty factor or FPF, number of iterations, number of repetitions) will involve

several Marxan with Zones runs to determine appropriate parameter values. For each run,

the information in output tables need to be examined to determine whether targets have

been met, and if alterations to targets or other parameters need to be made. Visual

inspections of results will also identify if solutions are meeting desired spatial arrangements

and whether the zone boundary cost still requires calibration.

Given the need for multiple scenarios, it is important to be well organised and to have an

efficient file management protocol (see suggestions on file management in Section 5.2). Once

the input files have been set up, it should be quite easy to modify the scenario, re-run Marxan

with Zones and investigate the results.

A more detailed treatment of each of the main steps for running a Marxan with Zones

analysis follows in subsequent sections.

Marxan with Zones User Manual 4-22

4 Pre-Processing of Data

4.1 Overv iew of Data Preparat ion

Data compilation, management and preparation of features and cost data are typically the

most time-consuming aspects of any Marxan with Zones analysis. This section focuses on

data preparation. It summarizes two essential steps for preparing spatial data for

incorporation into Marxan with Zones:

1. dividing the planning region into planning units, and

2. determining the distribution of features and costs across planning units.

These steps are used to convert spatial information into a format that can subsequently be

used to generate the Marxan with Zones input files. Both steps require some knowledge of a

GIS software, such as ArcGIS or QGIS. We encourage users to acquire the necessary GIS skills

through external resources or trainings, as this manual includes minimal instructions for

using GIS software. Users are also encouraged to consult the Marxan Good Practice

Handbook (MGPH) for guidance on assessing, managing, and preparing datasets, as this

guidance is also valid for Marxan with Zones.

4.2 Div iding the P lanning Region into P lanning Units

An essential pre-processing step for any Marxan with Zones exercise is to divide the planning

region into a set of planning units. In their simplest form, planning units may be defined by

overlaying the planning region with a grid of squares (Figure 4a), a lattice of hexagons

(Figure 4b), or irregularly shaped planning units (Figure 4c).

(a) Square PUs (b) Hexagonal PUs (c) Irregular PUs

Figure 4. Three types of planning units that could be used in Marxan with Zones

Marxan with Zones User Manual 4-23

A great deal of care should be taken when deciding upon the size and shape of planning units,

as it will influence the results of your Marxan with Zones analyses. The MGPH provides

guidance for determining the appropriate planning unit size and shape. In general, planning

unit size and shape is informed by the scale of the planning region (i.e., global, regional,

national, or local), the resolution of datasets being used, the objectives of the planning

exercise, and the intended use of the outputs (e.g., general area prioritisation or specific

plans for implementation).

In addition to planning unit size and shape, the number of planning units may also need to

be considered in certain cases. There is a limit on the number of planning units that Marxan

with Zones can handle. This is not, however, a fixed number as it depends on the number of

features you wish to plan for and to some extent on the power of your computer. The MGPH

discusses this topic in more detail.

4.3 Determ ining the Distribution of Features & Costs

A second essential step of data processing is to determine the distribution of the planning

features and costs across the planning units. This requires completing the following tasks in

a GIS software:

1. Data layers representing planning features must each be converted into a single

unified dataset associated with the planning unit data layer. This means assembling

all the requisite feature data, and then calculating how much of each feature is located

within each planning unit.

2. Data layers representing different costs will also need to be assembled and associated

with each planning unit. Contrary to Marxan, Marxan with Zones accepts more than

one cost value per planning unit. There should be a non-zero cost in every planning

unit to avoid selection errors.

3. Individual layers containing tallied information on the amount of each feature and

cost in each planning unit can now be linked into a single database file. This database

file can subsequently be used in a Marxan supporting software (see Section 2.3) to

generate the standard set of input files required to run Marxan with Zones.

Figure 5 illustrates each task using a few data layers on features and costs. It also provides

an example of a subset of a resulting database file. Note that the first column of the database

table lists the planning unit identifier, while the following columns each correspond to a

feature or cost. In sum, the database contains information on the amount of each feature and

cost in each planning unit.

Marxan with Zones User Manual 4-24

Figure 5. GIS workflow for determining the distribution of features and costs

Marxan with Zones User Manual 5-25

5 Input F iles, Parameters & Variables

5.1 Overv iew of Input Files

The section summarizes the input files required to run Marxan with Zones, as well as the

optional files that can be used to facilitate additional functionality (Table 7). Marxan with

Zones builds on the standard set of input files for Marxan: input.dat, feat.dat, pu.dat,

puvfeat.dat, and bound.dat files. All the standard Marxan files are required to run Marxan

with Zones, apart from the bound.dat file which is optional. Marxan with Zones also needs

three new input files to function: zone.dat, cost.dat, and zonecost.dat files. A few optional

files (e.g., zoneboundcost.dat, zonetarget.dat, and zonecontrib.dat files) can also be included

in Marxan with Zones for specific functions.

An example of each input file is contained in the download package for Marxan with Zones

(sample input files are in a folder called ‘Sample_Input_Files’; automatically downloaded

when you download Marxan with Zones). Note that these input files are for demonstration

purposes only.

Table 7. Input files for Marxan with Zones

File Default Name Standard Marxan

File or New File

Required in

Marxan w/ Zones

Input Parameter File input.dat Standard Marxan Yes

Feature File feat.dat Standard Marxan Yes

Planning Unit File pu.dat Standard Marxan Yes

Planning Unit versus Feature File puvfeat.dat Standard Marxan Yes

Zones File zones.dat New Yes

Costs File costs.dat New Yes

Zone Cost File zonecost.dat New Yes

Boundary Length File bound.dat Standard Marxan No

Zone Boundary Cost zoneboundcost.dat New No

Planning Unit Zone puzone.dat New No

Planning Unit Lock pulock.dat New No

Zone Target zonetarget.dat New No

Zone Target 2 zonetarget2.dat New No

Zone Contribution zonecontrib.dat New No

Zone Contribution 2 zonecontrib.dat New No

Marxan with Zones User Manual 5-26

The required and optional input files are summarized below.

 The Input Parameter File is used to set values for all the main parameters that

control the way in which Marxan with Zones works. It also tells the software where

to find the input files and where to place the output files.

 The Feature File (also referred to as ‘Species Feature File’ or spec.dat) contains

information about each of the features being considered, including their name,

targets, and the penalty that should be applied if targets are not met.

 The Planning Unit File lists all the planning units and assigns one or more costs to

each planning unit.

 The Planning Unit versus Feature File (also known as ‘Planning Unit versus Species

Feature File’, puvsp.dat, or puvspr.dat) contains information on the distribution of

features in each of the planning units.

 The Boundary Length File contains information on the boundary length or

‘boundary cost’ between pairs of planning units.

 The Zones File lists the names and numeric identifiers of all possible zones.

 The Costs File is used to assign each cost name in the Planning Unit File with a

numeric identifier.

 The Zone Cost File is used to assign a weighting factor for each cost in each zone.

 The Zone Boundary Cost File can be used if you want boundaries between different

zones to have different costs. This is useful when seeking a particular spatial

configuration between zones.

 The Planning Unit Zone is used to restrict certain planning units to 2 or more zones.

 The Planning Unit Lock is used to restrict certain planning units to a single zone.

 The Zone Target or Zone Target 2 is used to allow zone-based targets to be set in

Marxan with Zones.

 The Zone Contribution or Zone Contribution 2 work in tandem with overall targets

in the Feature File to specify differential contribution rates to overall target.

These input files are described in greater detail in Sections 5.3 and 5.4.

5.2 Input Files Managem ent & Form at

This section provides guidance for creating and managing input files, as well as for setting

up a Marxan with Zones database folder. There are different options for developing, editing,

and viewing the input files for Marxan with Zones. The choice of method will depend on your

skills, available software and personal preference. Box 6 provides some recommendations

for developing of input files.

Marxan with Zones User Manual 5-27

Box 6. The Development of Input Files

We recommend using one of the GIS software and associated Marxan plugins (see Section

2.3) to develop the standard set of Marxan input files (i.e., input.dat, feat.dat, pu.dat,

puvfeat.dat, and bound.dat). These files can then be read and modified in a spreadsheet

or text editor program, such as Windows Notepad, Microsoft Excel, and Open Office. These

spreadsheet or text editor programs can also be used to develop, edit, and view additional

input files associated with Marxan with Zones.

Like standard Marxan, all input files in Marxan with Zones use the .dat file extension (i.e.,

input files must be saved as a .dat file format). To generate a .dat file, simply add the suffix

‘.dat’ after the file name when saving the file. Files can be comma, space, or tab delineated.

An example of a Marxan with Zones database folder is shown in Figure 6. All input files must

be held in a folder called ‘input’ located within the Marxan with Zones database. The only

exception is the input.dat file, which must be held in the same location as the

MarZone_x64.exe (i.e., the Marxan with Zones application).

Figure 6. Recommended set up for a Marxan with Zones database folder

A Marxan with Zones database must contain:

 an ‘input’ folder, which contains all the input files for running Marxan with Zones

(apart from the input.dat file);

 an ‘output’ folder, which will contain the generated output files after Marxan with

Zones has completed its run;

 the ‘MarZone_x64.exe’ or the Marxan with Zones application;

 the ‘input.dat’ file, which defines the main parameters for running the software.

Marxan with Zones User Manual 5-28

A Marxan with Zones database can also contain a ‘pulayer’ folder with the planning unit

shapefile (i.e., the spatial layer file containing planning units). This folder is not required to

run Marxan with Zones, but it is useful to visualize outputs externally in GIS software.

The next sections describe the structure of the required input files (Section 5.3) and optional

input files (Section 5.4) for Marxan with Zones. All input files must be in the .dat file format.

Except for the Input Parameter File, all files consist of a header line and a main body. The

header line is a list of specific names describing what is contained in each column of the main

body. Each file contains a set of required and optional header names for Marxan with Zones

to run. The headers in each file must be written in all lower-case letters with no punctuation,

spaces, or numerals (unless otherwise noted). Variables in a single line can be separated by

a variety of characters, including spaces, tabs, or commas.

5.3 Required Input Files

This section describes the function, format, and associated variables of the input files

required to run Marxan with Zones:

 Input Parameter File (input.dat)

 Feature File (feat.dat)

 Planning Unit File (pu.dat)

 Planning Unit versus Feature File (puvfeat.dat)

 Zones File (zones.dat)

 Costs File (costs.dat)

 Zone Cost File (zonecost.dat)

All the required files must be included to run Marxan with Zones properly. Missing any

of the required files will cause Marxan with Zones to halt and generate an error message.

5.3.1 Input Param eter F ile (input.dat)

The Input Parameter File (input.dat) contains the main parameters that control how Marxan

with Zones finds solutions (i.e. which algorithm(s) are used and what parameters contribute

to the objective function). In addition, it tells Marxan with Zones where to find the required

input files and whether it needs to consider any optional input files. It also indicates which

output files it needs to generate and where it should save them.

An example of the input.dat file is provided in Figure 7. This example does not include all

possible variables that may be held in the input.dat file.

Marxan with Zones User Manual 5-29

Figure 7. An example of the Input Parameter File (input.dat). Left image shows the first half

of the file, and right image the second half of the file

A complete list of variables and default values for the input.dat file is provided in Table 8. As

depicted in the table (also in Figure 7), the variables are organized into six groups: General

Parameters, Annealing Parameters, Cost Threshold, Input Files, Save Files, and Program

Control. Each variable or group of variables are described in greater detail in the following

subsections.

Marxan with Zones User Manual 5-30

Table 8. Variable names and default values for the Input Parameter File (input.dat)

Category Variable Name Default Value Description

General

Parameter

BLM 0 Boundary Length Modifier

PROP 0.5 Proportion of planning units to

start in run

 RANDSEED -1 Random seed number

 NUMREPS 100 Number of separate runs with

same starting condition

 AVAILABLEZONE 1 ‘Available’ zone

Annealing

Parameters

NUMITNS 0 Number of iterations for

annealing for each run

 START TEMP 1 Starting temperature for

annealing

 COOLFAC 0 Cooling factor for annealing

 NUMTEMP 1 Number of temperature

decreases for annealing

Cost COSTTHRESH 0 Cost threshold

Threshold THRESHPEN1 0 Size of cost threshold penalty

 THRESHPEN2 0 Shape of cost threshold penalty

Input Files INPUTDIR input Input directory where data files

are stored

 FEATNAME feat.dat Name of Feature File

 PUNAME pu.dat Name of Planning Unit File

 PUVSPRNAME puvfeat.dat Name of Planning Unit versus

Feature File

 ZONESNAME zones.dat Name of Zones File

 COSTNAME costs.dat Name of Cost File

 BOUNDNAME bound.dat Name of Boundary Length File

 ZONEBOUNDCOSTNAME zoneboundcost

.dat

Name of Zone Boundary Cost

File

 PUZONENAME puzone.dat Name of Planning Unit Zone File

 PULOCKNAME pulock.dat Name of Planning Unit Lock File

 ZONETARGETNAME zonetarget.dat Name of Zone Target File

 ZONETARGET2NAME zonetarget2.dat Name of Zone Target 2 File

 ZONECONTRIBNAME zonecontrib.dat Name of Zone Contribution File

 ZONECONTRIB2NAME zonecontrib2.dat Name of Zone Contribution 2

File

Save Files SCENNAME output Name of folder where output files

will be saved

 SAVERUN 3 Save each run

 SAVEBEST 3 Save the best run

Marxan with Zones User Manual 5-31

Save SAVESUMMARY 3 Save summary information

Files SAVESCEN 2 Save scenario information

(cont.) SAVETARGMET 3 Save targets met information

 SAVESUMSOLN 3 Save summed solution information

 SAVESOLUTIONSMATRIX 3 Save all runs in a single matrix

 SOLUTIONSMATRIXHEADERS 1 Include header rows in solutions matrix

 SAVEPENALTY 3 Save computed feature penalties

 SAVELOG 2 Save log files

 SAVEANNEALINGTRACE 3 Report detail for simulated annealing

 ANNEALINGTRACEROWS 1000 Number of iterations to report detail for

 SAVEITIMPTRACE 3 Report detail for iterative improvement

 ITIMPTRACEROWS 1000 Number of iterations to report detail for

 SAVEZONECONNECTIVITYSUM 3 Save zone connectivity sum for runs

 OUTPUTDIR output Output directory to store output files

Program RUNMODE 1 Run option

Control MISSLEVEL 1 Species missing proportion

 ITIMPTYPE 0 Iterative improvement

 VERBOSITY 2 Screen option

There are two ways to develop the input.dat file for a given project:

 create a new file using one of the supporting software for Marxan and add the

additional fields needed in Marxan with Zones; or

 copy and modify the input.dat file that comes bundled with the Marxan with Zones

download package.

In either case, a text editor program (e.g., Windows Notepad or equivalent) can be used to

make changes to the input.dat file.

In the input.dat file, each variable must be entered on a separate line. To set the value of a

variable, start a line with the variable name and follow it with the value for that variable. The

variable name and value must be separated by a single space. The variable names must be in

upper case characters with no spaces. The variables can occur in any order in the file, but an

error will result if any variable is defined twice. Any line which does not start with one of the

valid variable names will be ignored, so it is possible to include comments or notes between

variables in this file.

Most of the variables have default values which will be used if they are not defined. The

exceptions to this are the variables that tell Marxan where to find the necessary input files,

where to save the output files, and the variable ‘RUNMODE’. There are no universally best

values for the parameters contained within the input.dat file. Although similar values may

Marxan with Zones User Manual 5-32

work well for different applications, you will need to determine the most appropriate

parameter values for each project. This is best done in an iterative fashion in which the

results are investigated, the parameters changed, the program run again, and the new results

compared with the old ones.

The following subsections give a description of each variable in the input.dat file, along with

guidance for setting appropriate parameter values. Guidance for calibrating the number of

repeat runs (NUMREPS) and the number of iterations (NUMITNS) is also provided.

5.3.1.1 Boundary Length M odif ier

Variable Name: BLM

Required: No

Description: In standard Marxan, the Boundary Length Modifier (BLM) is a

parameter used to control the spatial compactness of solutions

(compact versus fragmented solutions). In Marxan with Zones,

however, the spatial relationships between zones are controlled by the

Zone Boundary Cost file (zoneboundcost.dat).

Getting Started: The BLM in Marxan with Zones should be set to ‘0’ if no considerations

about the spatial arrangement between zones need to be made.

Otherwise, the BLM should be set to ‘1’ to “activate” the Zone Boundary

Cost file. Unlike Marxan, no calibration of the BLM is needed in Marxan

with Zones. Rather, the Zone Boundary Cost file should be calibrated if

it is used (see Section 5.4.2).

5.3.1.2 Starting P rop

Variable Name: PROP

Required: No

Description: When Marxan with Zones starts a run, it must generate an initial

solution. The ‘PROP’ variable defines the proportion of planning units to

start in the initial solution at the start of each run.

Getting Started: This variable must be a number between ‘0’ and ‘1’. If ‘0’ is chosen, then

no planning units will be included in the initial reserve. A value of ‘1’

Marxan with Zones User Manual 5-33

means all planning units will be included. A value of ‘0.5’ means 50% of

planning units will be randomly included. In practice, the setting has no

effect on the operation of simulated annealing, provided a sufficient

number of iterations is used.

5.3.1.3 Random Seed

Variable Name: RANDSEED

Required: No

Description: This variable controls whether the same ‘random’ selection of planning

units is included in the initial solution at the start of each run. Using a

constant positive integer for this variable will make Marxan with Zones

use the same random seed each time it is run.

Getting Started: The random seed number must be an integer. If the value is negative,

the program will randomly select a seed. A value of ‘-1’ is recommended,

except for debugging purposes. Along with debugging purposes, a

positive value could be used if you want more than one application of

the program to be identical.

5.3.1.4 Repeat Runs

Variable Name: NUMREPS

Required: Yes

Description: This variable indicates the number of separate runs you want Marxan

with Zones to perform; that is, it defines the number of solutions you

want the software to generate. Each new run is independent of the

previous one, but they will all use the same parameter and variable

values.

Getting Started: When running a new scenario for the first time, it is always advisable to

begin with a very small number of runs (e.g., 10). This will allow you to

check that the program is performing as desired (i.e. the solutions are

meeting the required targets) without having to wait a long time. In

Marxan with Zones User Manual 5-34

order to get an idea of selection frequency (the frequency with which

planning units are assigned to each zone across multiple runs), you will

generally need to perform many runs. One hundred runs is probably a

minimal value to start with and is an intuitive value from which to

calculate selection frequency. Adding more runs will sample more of the

solution space but will of course increase the processing time. The final

number you decide on must be a balance between the time taken and

the information gained. Hence, the ideal number of repeat runs will vary

between projects.

5.3.1.5 Simulated Annealing Parameters

Variables: NUMITNS

STARTTEMP

COOLFAC

NUMTEMP

Required: Yes (when using Simulated Annealing)

Description: These four variables control the way the Simulated Annealing algorithm

proceeds. They will come into play when Simulated Annealing is chosen

in the ‘RUNMODE’ (see Section 5.3.1.10). The NUMITNS sets the number

of iterations for annealing for each run (i.e., the number of times Marxan

with Zones tries to generate a solution for each run). The STARTTEMP

sets the starting temperature for annealing. The COOLFAC determined

how quickly the system cools. The NUMTEMP defines the number of

temperature decreases for annealing.

Getting Stared: In practice, you will rarely need to adjust these variables, apart from the

NUMITNS.

For the STARTTEMP, a value of ‘1’ indicates that adaptive annealing will

be used, and the program will automatically select a starting

temperature. This is recommended for use in Marxan with Zones.

If the STARTTEMP is set to -1, then the COOLFAC is not necessary to run

Marxan with Zones. This is recommended for use in Marxan with Zones.

Marxan with Zones User Manual 5-35

The NUMTEMP must be less than or equal to the number of iterations.

A value of ‘10,000’ is ideal and is recommended in Marxan with Zones.

Setting it lower can make the regime too coarse; setting it too high will

lead to round-off error problems with temperature.

The NUMITNS sets the number of times Marxan with Zones tried to

generate a solution for each run. This number of iterations has a

substantial bearing on how long each run takes. In general, the number

of iterations determines how close Marxan gets to the optimal solution

(or at least a very good solution). The more iterations set, the longer the

program will run, and the more likely Marxan with Zones will generate

a better solution (i.e. lower objective function value).

The number of iterations needs to be scaled according to the

number of zones used to achieve an efficient operation of Marxan with

Zones. For example, if for a standard Marxan analysis with two zones

you needed 1,000,000 iterations to achieve efficient solutions, for a

Marxan with Zones analysis with six zones you will need at least

3,000,000 iterations as a starting point. To calibrate this parameter,

increase the number of iterations until there is no substantial

improvement in score or cost, then choose an acceptable trade-off

between solution efficiency (average score of solutions) and execution

time (number of iteration or run time).

5.3.1.6 Availab le Zone

Variable Name: AVAILABLEZONE

Required: Yes

Description: This variable indicates which zone number from the Zones Input File

(zones.dat) is your available zone. In most cases, the available zone is

treated as a zone without specific objectives or management actions.

5.3.1.7 Cost Threshold

Variable Name: COSTTHRESH

THRESHPEN1

Marxan with Zones User Manual 5-36

THRESHPEN2

Required: No

Description: In standard Marxan, the cost threshold (COSTTHRESH) can be included

to tell Marxan to find a solution below a total cost. In Marxan with Zones,

it can be included to cap the zoning configuration to a set cost.

As discussed in Section 1.1, Marxan with Zones is designed to solve a

‘minimum set’ problem, where the goal is to meet feature targets for the

least cost. Another class of problem is known as the ‘maximum coverage’

problem, where the goal is to maximize outcomes for a set cost (e.g.,

achieve the best conservation outcomes for a given fixed budget).

Although including a cost threshold does not make Marxan with Zones

solve the strict ‘maximum coverage’ problem, it is comparable and can

be used in cases where you have feature targets you hope to meet and

cannot exceed a predetermined budget. For more information see

Appendix B, section 1.6.

Getting Started: These variables could be used if you want Marxan with Zones to cap the

zoning configuration to a set cost.

If the cost threshold variables are not used, this section does not need to

be included in the input.dat file for Marxan with Zones. Alternatively, the

cost threshold variable can be set to ‘0’ in the input.dat file to disable it.

5.3.1.8 Input Files

Variable Name: INPUTDIR

FEATNAME

PUNAME

PUVSPRNAME

ZONESNAME

COSTSNAME

ZONECOSTNAME

BOUNDNAME

ZONEBOUNDCOSTNAME

PUZONENAME

PULOCKNAME

Marxan with Zones User Manual 5-37

ZONETARGETNAME

ZONETARGET2NAME

ZONECONTRIBNAME

ZONECONTRIB2NAME

Required: Yes

Description: The ‘INPUTDIR’ variable is used to tell Marxan with Zones the name of

the folder containing the input files (this folder is commonly named

‘input’). The remaining variables each correspond to a particular input

file. They are used to tell Marxan with Zones the name of the input files

contained in the ‘input’ folder.

While all possible input files are listed in this section, the user should

only list the input files they want Marxan with Zones to consider.

Marxan with Zones will only consider input files with file names listed

in the input.dat file.

Description and

Getting Started:

The input section only needs to include the required Marxan with Zones

files plus the optional files that you choose to utilize. The protocols for

file naming and storage have previously been discussed (see

introduction of Section 5.3.1).

 Before running Marxan with Zones, it is important to verify that

the files are in the correct folder with file names that match those in the

input.dat file. The software will not run properly if it cannot find the files

due to a naming or storage error. Likewise, the INPUTDIR must be done

correctly or Marxan with Zones will not run. To avoid this error, we

recommend following the file management protocol outlined in Section

5.2 and using the default folder name (‘input’) for the folder containing

the input files.

5.3.1.9 Save Files

Variable Name: SCENNAME

SAVERUN

SAVEBEST

SAVESUMMARY

SAVESCEN

Marxan with Zones User Manual 5-38

SAVETARGETMET

SAVESUMSOLN

SAVESOLUTIONSMATRIX

SOLUTIONSMATRIXHEADERS

SAVEPENALTY

SAVELOG

SAVEANNEALINGTRACE

ANNEALINGTRACEROWS

SAVEITIMPTRACE

ITIMPTRACEROWS

SAVEZONECONNECTIVITYSUM

OUTPUTDIR

Required: Yes

Description: The SCENNAME is the name you wish Marxan with Zones to append

to all output files it saves (e.g., setting the SCENNAME to ‘output’

would save the summed solution output with the name

‘output_ssoln.dat’).

The ‘OUTPUTDIR’ is used to tell Marxan with Zones the name of the

folder where it should save the output files. The naming and

location protocols for this folder are discussed in Section 5.2.

The remaining variables are used to tell Marxan with Zones which

output files to generate and how outputs should be saved (e.g., .dat,

.txt, or .csv format). A description of each output file is provided in

the output file section of this manual (Section 7.4).

The following codes are used to select the desired format of output

files:

 Use code ‘1’ to save a file as .dat

 Use code ‘2’ to save a file as .txt

 Use code ‘3’ to save a file as .csv

 Use code ‘0’ if you do not want a file to be generated

Getting Started: While the default name for the SCENNAME is ‘output’, it is useful to

select a name that will help you identify the scenario that generated

the outputs. For instance, you could set the SCENNAME to

‘scenario1’ for your first scenario, so that all the output files can

Marxan with Zones User Manual 5-39

easily be linked to this scenario (e.g., ‘scenario1_ssoln.dat would be

the name given to the summed solution output file).

Below are recommended format codes for output files (also listed

in Table 8):

 SAVERUN 3

 SAVEBEST 3

 SAVESUMMARY 3

 SAVESCEN 2

 SAVETARGETMET 3

 SAVESUMSOLN 3

 SAVELOG 2

 SAVESNAPFREQUENCY 2

Like the input folder, it is critical to ensure that the output

folder in OUTPUTDIR is set up correctly or Marxan with Zones may

not run.

5.3.1.10 Run Options

Variable Name: RUNMODE

Required: Yes

Description: There are two basic algorithms that can be used to formulate a solution

in Marxan with Zones: simulated annealing and iterative improvement.

These algorithms can be used alone or in combination with each other.

The run mode selected in the input.dat file determines which algorithm,

or combination of algorithms, is used to formulate a solution in Marxan

with Zones.

There are four different run options, which can be set using the

following codes:

-1 = Use no methods

1 = Apply annealing followed by the iterative improvement algorithm

4 = Use only the iterative improvement

6 = Use only annealing

Marxan with Zones User Manual 5-40

Getting Started: For Marxan with Zones, the most useful mode option is simulated

annealing followed only by iterative improvement (mode 1). This is

because Simulated Annealing searches the solution space effectively,

and the Iterative Improvement then ensures that the solution

represents the best option in the immediate area of the decision space

(known as a ‘local minimum’). For most applications of Marxan with

Zones, this will be the best run option and will rarely need to be changed.

For more information see Appendix B, Section B-2.

5.3.1.11 M issing P roportion

Variable Name: MISSLEVEL

Required: No

Description: This is the proportion of the target, which a feature must reach in order

for it not to be counted as missing. A value of ‘1’ means that 100% of the

target for a feature must be included in the solution, or it will be

considered an unmet target. There are situations where Marxan can get

extremely close to the target (e.g. 99% of the desired level) without

actually meeting the target. You can specify a level for which you are

pragmatically satisfied that the amount of representation is close

enough to the target to report it as met.

Getting Started: This value should always be high, i.e. greater than or equal to ‘0.95’. If

you are setting it lower than ‘0.95’, you should probably think about

changing your targets.

As a guide, it is often useful to run Marxan with Zones with the

‘MISSLEVEL’ set at ‘1’ and then re-run with it set at a slightly lower value

and see if there is much of a difference in system cost.

Setting this variable does not change the way the Marxan with Zones

algorithm works, it merely changes the way target achievement is

reported in screen and file output.

5.3.1.12 Iterative Improvement

Marxan with Zones User Manual 5-41

Variable Name: ITIMPTYPE

Required: No

Description: Iterative improvement will only be used when a run mode using the

iterative improvement algorithm is selected. If Iterative Improvement is

being used to help find solutions, this variable defines what type of

Iterative Improvement will be applied. There are five possible iterative

improvement types.

The type is set using the following codes:

-1 = Do not use iterative improvement

0 = Normal Iterative Improvement

1 = Two Step Iterative Improvement

2 = Swap Iterative Improvement

3 = Normal Iterative Improvement followed by Two Step Iterative

Improvement

Getting Started Using the default value of ‘0’ is recommended in Marxan with Zones.

5.3.1.13 Screen Output

Variable Name: VERBOSITY

Required: Yes

Description: This value indicates how much information Marxan with Zones prints to

the screen (the verbosity) while it is running.

There are four levels of information that can be selected using the

following numbered codes:

0 = Silent Running

1 = Results Only

2 = General Progress

3 = Detailed Progress

A value of ‘0’ will display the lowest level of information and a level of

‘3’ will show the highest amount of information. A more detailed

Marxan with Zones User Manual 5-42

description of each value is provided in the Screen Output section

(Section 7.3).

Getting Started The default for this variable is ‘General Progress’ and in most cases this

will be the best choice. Printing results to the screen does not increase

Marxan with Zones’ run time substantially unless 'Detailed Progress' is

used.

It is generally worthwhile to use at least ‘Results Only’ so that you have

some idea of how many runs have been completed. ‘Detailed Progress’

is useful for seeing how the process of annealing works and can also help

identify problems Marxan with Zones runs (e.g. if the numbers do not

change and it is “stalled”). For this reason, some users always use this

setting, to visually check that the program appears to be running well.

Only apply ‘Silent Running’ if you are confident in Marxan with Zones

execution and you are saving all necessary outputs.

5.3.2 Feature File (fea t .dat)

The Feature File (feat.dat) is the same as in standard Marxan. It contains information about

each of the features being considered, including the feature unique identifier, the feature

name, and the feature target. The features may represent any biological, social, cultural, or

economic feature of interest in the planning region with a spatial component. An example of

the feat.dat file is shown in

Figure 8.

Figure 8. An example of the Feature File (feat.dat)

 This file is sometimes referred to as the Species Feature File with the file name

‘spec.dat’. This alternative name reflects Marxan’s historical roots in the natural sciences,

where early applications of the decision support tool focused almost exclusively on the

Marxan with Zones User Manual 5-43

conservation of biological features, such as species and habitats. However, features in

Marxan and Marxan with Zones may represent social and economic features, as well as

conservation features. As such, this manual refers to this file by its more appropriate name,

the Feature File. Marxan with Zones will work with either file name, so long as the file name

matches the one entered in the input.dat file.

Table 9 contains a complete list of all possible variables for the feat.dat file. The file must

contain an ‘id’ field, as well as a ‘target’ or ‘prop’ field.

Table 9. Variable of the Feature File (feat.dat)

Variable Name Required Description

id Yes The numeric identifier for this feature.

target No, if prop

is used

The target amount (in unit of puvfeat.dat file) of the feature

to include across all zones.

prop No, if target

is used

An alternative to target; the proportion of the total amount

of the feature which must be included in the zones.

targetocc No The number of occurrences of the feature required.

propocc No The percentage of occurrences of the feature required.

fpf No The feature penalty factor for that feature.

name No Indicates the name of that feature.

Feature targets can either be set as an amount in the ‘target’ field or as a proportion of the

total amount in the ‘prop’ field. The ‘targetocc’ and ‘propocc’ fields can also be used for

setting targets. The selection of appropriate feature targets will depend on the goals and

objectives of the zoning project. Targets do not need to have uniform values for all features.

Whatever the chosen targets, it is important that they are well justified, as they will have an

enormous bearing on the character of potential zoning systems. The MGPH provides

guidance for setting targets in standard Marxan, most of which is equally applicable to

Marxan with Zones.

5.3.2.1 Feature ID

Variable Name: id

Required: Yes

Description: The numeric identifier for each feature. The id must be a positive

integer.

Marxan with Zones User Manual 5-44

Getting Started: Be careful not to duplicate id numbers as Marxan ones will ignore all but

the last one.

5.3.2.2 Target (amount)

Variable Name: target

Required: Only if ‘prop’ is not used.

Description: The variable ‘target’ can be used to set a total amount of each feature to

be included across all zones (i.e., the overall target amount). For

example, if the target is to capture at least 10 occurrences of Feature A,

then a value of ‘10’ should be set in the ‘target’ field for that feature.

The set values represent constraints on potential solutions to solving

the zoning problem. That is, for a solution to be feasible, it must include

at least this amount of each feature across all zones.

Getting Started: The ‘target’ field is used to set targeted amounts. Targets set in the

variable can take any value from ‘0’ to the total sum of that feature found

in all planning units.

You must be careful not to set a higher target than can possibly be

achieved given the occurrence of a feature in the planning units, as these

targets will not be achievable. The target value must be expressed in the

same units as the puvfeat.dat file. However, units from different features

can vary (e.g., hectares of coverage for FEAT1, number of occurrences

for FEAT2, and length for FEAT 3).

If an ‘overall’ target is specified through the ‘target’ field, then a

Zone Target File (zonetarget.dat or zonetarget2.dat) or Zone

Contribution File (zonecontrib.dat or zonecontrib2.dat) must be used.

See Section 5.4.5 or Section 5.4.6 for more information.

5.3.2.3 Target (proportion)

Variable Name: prop

Marxan with Zones User Manual 5-45

Required: Only if ‘target’ is not used.

Description: The variable ‘prop’ is an alternative to ‘target’ field described above. It

is used to target a set proportion of the total amount of a feature for

inclusion in the zones. For instance, a value of ‘0.3’ would indicate that

30% of that feature should be capture in zone(s). With this target,

Marxan with Zones will work to find solutions that capture 30% of the

total abundance of that feature based on data in the Planning Unit versus

Feature File (puvfeat.dat). Total abundance is the sum of the amount

found in all planning units, including those that may be restricted to one

or more zone(s). Hence, the proportion is based on the total amount

defined in the puvfeat.dat file.

Getting Started: Feature targets set in the ‘prop’ field must be a value between ‘0’ and ‘1’,

where ‘0’ represents 0% of the total abundance and ‘1’ represents 100%

of the total abundance.

If an ‘overall’ target is specified through the ‘prop’ field, then a Zone

Target File (zonetarget.dat or zonetarget2.dat) or Zone Contribution

File (zonecontrib.dat or zonecontrib2.dat) must be used. See Section

5.4.5 or Section 5.4.6 for more information.

5.3.2.4 Number o f Occurrences

Variable Name: targetocc

Required: No

Description: The number of occurrences of the feature required. If the feature occurs

in a planning unit, regardless of its amount, that is considered one

occurrence. This can be used in conjunction with or instead of ‘target’.

Getting Started
If an ‘overall’ target is specified through the ‘targetocc’ field, then a

Zone Target File (zonetarget.dat or zonetarget2.dat) or Zone

Contribution File (zonecontrib.dat or zonecontrib2.dat) must be used.

See Section 5.4.5 or Section 5.4.6 for more information.

Marxan with Zones User Manual 5-46

5.3.2.5 Percentage of O ccurrences

Variable Name: propocc

Required: No

Description: The percentage of occurrences of the feature required. This can be used

in conjunction with or instead of the ‘prop’ field.

Getting Started:
If an ‘overall’ target is specified through the ‘propocc’ field, then a

Zone Target File (zonetarget.dat or zonetarget2.dat) or Zone

Contribution File (zonecontrib.dat or zonecontrib2.dat) must be used.

See Section 5.4.5 or Section 5.4.6 for more information.

5.3.2.6 Feature Penalty Factor

Variable Name: fpf

Required: No

Description: The ‘fpf’ stands for the Feature Penalty Factor (sometimes referred to as

the ‘spf’ or Species Penalty Factor). The fpf is a multiplier that

determines the size of the penalty that will be added to the objective

function if the target for a feature is not met in a solution. The higher the

value, the greater the relative penalty, and the more emphasis Marxan

with Zones will place on ensuring that the feature’s target is met. The fpf

can be the same for all features or unique to each feature.

Getting Started: Choosing a suitable value for this variable is essential to achieving good

solutions in Marxan and Marxan with Zones alike. If it is too low,

resulting solutions may fall short of the feature targets. If it is too high,

it may impair the software’s ability to find efficient solutions. It will

often require some experimentation to determine appropriate FPFs.

This should be done in an iterative fashion (see Box 7).

Marxan with Zones User Manual 5-47

Box 7. Calibration of Feature Penalty Factor (FPF)

The Feature Penalty Factor (FPF) needs to be calibrated to find a high enough FPF value

that allows you to meet all feature targets.

There are 2 main methods to calibrate the FPF:

1. Run a series of scenarios that explore a range of FPF values (e.g., 1, 10, 50, 100, etc.).

Next, plot the FPF values versus the number of missing values. Examine the plot and

identify the lowest FPF value able to meet all targets. This is (or is close to) an

appropriate FPF value. This method is suitable when there aren’t many competing

objectives, or when the targets are relatively low across all features. Zonae Cogito (see

Section 2.3.1) includes a tool called “Parameter Calibration Tool”, which can be used

to calibrate the FPF using this method (more information in Watts et al, 2011).

2. Zonae Cogito also includes a second tool which is a variation of the first method and

called “Adaptive Calibration Tool”. This tool allows the user to specify a minimum

proportion of targets that need to be achieved. The tool works by increasing and

decreasing the FPF for all features iteratively until it converges on an efficient FPF that

meets the desired minimum target level. For more information about the steps the

algorithm follows see Watts et al, 2011.

3. When a large number of target objectives cannot be achieved simultaneously, or when

a trade-off between competitive objectives is being explored, then a different

approach must be used to calibrate FPF values. First, calibrate the FPF for one group

of features (e.g., conservation features), while holding the FPF for another group of

“opposing” features (e.g. fisheries features) constant. The same technique is then

applied for the group of “opposing” features while holding the FPF for the initial group

of features constant. This allows you to identify the FPF values required under neutral

priority. Based on this ‘neutral’ value for different groups of features, you can then

vary the FPF value for conservation features if meeting conservation targets is a

priority over meeting other targets, and vice-versa. For more information about how

this technique is applied, see Watts, Steinback and Klein (2008) and Gurney et al

(2015).

The calibration of FPF should be performed before the calibration of the Zone Boundary

Cost (see Section 5.4.2). There might be a need to adjust FPF values after the Zone

Boundary Cost calibration. These calibration steps are needed because the parameters

interact with each other. Hence, changing one will affect the behavior of the other.

Marxan with Zones User Manual 5-48

5.3.2.7 Name o f feature

Variable Name: Name

Required: No

Description and

Getting Started:

Indicates the name of the feature. Do not include any spaces or non-

alphanumeric characters in the name.

5.3.3 P lanning Unit F ile (pu.dat)

The Planning Unit File (pu.dat) defines the unique identifier of each planning unit in the

study region and contains information about costs. This file is the same as in standard

Marxan. However, while Marxan is restricted to a single cost field, Marxan with Zones can

include multiple cost fields with different names. As such, each planning unit in the pu.dat

file may contain one or more costs. An example of the Planning Unit File is shown in Figure

9. In this example, there are 5879 planning units and 4 types of costs.

Figure 9. An example of a portion of the Planning Unit File (pu.dat)

The file consists of at least two fields: ‘id’ field and one or more ‘costname’ fields (Table 10).

The number of ‘costname’ fields is determined by the number of different costs, where each

field reflects one cost variable. To keep track of different costs, the header ‘costname’ can be

replaced with the actual name of the cost (e.g., ‘LANDCOST’, ‘FISHING’, ‘AREA’).

Table 10. Variable names and requirements for Planning Unit Fie (pu.dat)

Variable Name Required Description

id Yes The numeric identifier for this planning unit.

costname No The individual cost of each planning unit.

Marxan with Zones User Manual 5-49

5.3.3.1 P lanning Unit ID

Variable Name: Id

Required: Yes

Description: The numeric identifier for each planning unit.

Getting Started: Values for the variable ‘id’ can be any number (i.e. there is no

requirement to start at number 1), but they must not contain spaces,

letters or punctuation.

This number should not be confused with the variable, ‘id’, in the

Feature File (feat.dat in Section 5.3.2).

5.3.3.2 P lanning Unit Cost

Variable Name: costname

Required: No

Description: The individual cost of including each planning unit in the planning

system. Each planning unit can have more than one cost value, which

are added into the pu.dat file with different names. The header

‘costname’ can be replaced with the actual name of the cost but must not

include delimiters (spaces, tabs, etc.).

Marxan with Zones will use a default value of ‘1’ if this variable is not

specified.

Getting Started: Costs are flexible and can pertain to a range biological, social, cultural,

or economic implications of assigning a planning unit to a given zone.

Information regarding the type of cost measures that can be considered

consult the MGPH.

In Marxan with Zones, there are two additional and new files that relate

to costs: the Costs File (costs.dat) and the Zone Cost File

(zonecostfile.dat). The costs.dat file is simple; it is used to assign a

unique identifier and a name to each cost (see Section 5.3.6 for more

information). The zonecost.dat file is used to determine how each cost

Marxan with Zones User Manual 5-50

will be applied in each zone. This file can be used to assign multiple costs

to a zone and to apply different costs to different zones (see Section 5.3.7

for more information).

Marxan with Zones User Manual 5-51

5.3.4 P lanning Unit versus Feature File (puv feat .dat)

The Planning Unit versus Feature File (puvfeat.dat) contains information on the distribution

of features across the planning units, like in standard Marxan1. Features can represent a

range of ecological, economic and social information. An example of the puvfeat.dat file is

shown in Figure 10.

Figure 10. An example of a portion of the puvfeat.dat file

The file must have three columns in the following order - featureid, puid, amount - sorted by

the planning unit id for Marxan with Zones to execute properly (Table 11).

Table 11. Variable names and requirements for Planning Unit versus Feature File

(puvfeat.dat)

Variable Name Required Description

featureid Yes Feature identifier.

puid Yes Planning unit identifier.

amount Yes Amount of feature in the planning unit.

1 This file is sometimes referred to as the Planning Unit versus Species Feature File with the file name
‘puvsp.dat’ or ‘puvspr.dat’. Marxan with Zones will run with any of the versions of the file name (i.e.,
puvfeat.dat, puvsp.dat, or puvspr.dat), so long as the file name in the input folder matches the file name with
the .dat extension in the input.dat file. The variable name in the input.dat file must always be entered as
PUVSPRNAME. Marxan will halt and generate an error if you use the file name PUVFEATNAME instead.

Marxan with Zones User Manual 5-52

5.3.4.1 Feature ID

Variable Name: featureid

Required: Yes

Description: This is the unique identifier for each feature. This must correspond to

the id numbers used in the Feature File (feat.dat).

5.3.4.2 P lanning Unit ID

Variable Name: puid

Required: Yes

Description: This is the planning unit identifier. The planning unit id numbers must

correspond to the numbers used in the Planning Unit File (pu.dat).

5.3.4.3 Feature Amount

Variable Name: amount

Required: Yes

Description: This identifies the amount of feature in the planning unit.

Getting Stated: The measurement unit between features can be different. However, the

units within a feature must be consistent. The amount for a given feature

must be in the same units used to set the target amount for that feature

(in the feat.dat file).

You should not list cases where a feature does not occur in a planning

unit (i.e., you should not have a row with an amount of ‘0’). Rather the

row should be omitted altogether from the file. Marxan with Zones will

assume that features only occur in planning units where an amount has

been entered. The default amount for a planning unit/feature pair that

is omitted from the file is zero.

Marxan with Zones User Manual 5-53

5.3.5 Zones F ile (zones.dat)

The Zones File (zones.dat) defines a unique identifier and a zone name for each zone. An

example of this file with three types of management zones (an available zone, a partially

protected zone, and a reserve zone) is shown in Figure 11.

Figure 11. An example of the zones.dat file

The file must have two fields in the following order: zoneid, zonename, sorted by lowest to

highest zoneid and in a consecutive order (Table 12).

Table 12. Variable names and requirements for the Zones File (zones.dat)

Variable Name Required Description

zoneid Yes The numeric identifier number for the zone.

zonename Yes The name of the zone.

5.3.5.1 Zone ID

Variable Name: zoneid

Required: Yes

Description: The numeric identifier for the zone. The zoneid must be a positive

integer and the file must be sorted by lowest to highest zoneid.

Getting Started:
Zone id ‘1’ must be specified as the ‘available’ zone, which is

essentially the zone for ‘everything else’. This zone could have

designated contribution targets and/or zone targets as well. Marxan

with Zones may halt and generate errors if this zone is not included in

this file.

Marxan with Zones User Manual 5-54

5.3.5.2 Zone Name

Variable Name: zonename

Required: Yes

Description: This variable indicates the name of the zone.

Getting Started: It is useful to assign a zone name that reflects an objective, activity or

characteristic associated with the zone (e.g., ‘conservation’ for a zone

that aims to protect biodiversity). Do not include any spaces or non-

alphanumeric characters in the name.

5.3.6 Costs F ile (costs.dat)

The Costs File (costs.dat) defines a unique identifier and a name for each cost. An example of

the costs.dat file is shown in Figure 12 In this example, there are four costs.

Figure 12. An example of the costs.dat file

This file must include two fields in the following order: costid, costname, and sorted by

lowest to highest costid (Table 13). This file does not contain any data for each cost; cost

values are held in the pu.dat file, like in standard Marxan.

Table 13. Variable names and requirements for the Costs File (costs.dat)

Variable Name Required Description

costid Yes The numeric identifier for the cost.

costname Yes The name of the cost.

If the costs.dat file is not included in Marxan with Zones, the cost values indicated in the

pu.dat file will be invalid and a default cost of ‘1’ for all planning units will be used.

Marxan with Zones User Manual 5-55

5.3.6.1 Cost ID

Variable Name: costid

Required: Yes

Description: The numeric identifier for the cost. The costid must be a positive integer

and the file must be sorted by lowest to highest costid.

5.3.6.2 Cost Name

Variable Name: costname

Required: Yes

Description: This variable indicates the name of the cost.

Getting Stated: You can choose any name for a given cost, so long as it does not include

any spaces or non-alphanumeric characters.

5.3.7 Zone Cost F ile (zonecost.dat)

In Marxan with Zones, it is possible to have multiple costs applied to a zone, and it is possible

to apply different costs to different zones. This is done through the Zone Cost File

(zonecost.dat), a new and required file for Marxan with Zones.

The Zone Cost File contains information on which costs to apply to each zone, as well as a

multiplier for the cost. The file must have three fields in the following order: zoneid, costid,

multiplier; sorted lowest to highest by zoneid, then by costid (Table 14). The zone-specific

multiplier is used to weight and sum costs per zone. It allows the user to assign different

weightings to different costs. If some combinations of zone and cost are not present, then

that cost will be given a weighting of ‘0’ and will not be considered to formulate a solution.

Table 14. Variable names and requirements for the Zone Cost File (zonecost.dat)

Variable Name Required Description

zoneid Yes The zone identifier.

costid Yes The cost identifier.

multiplier Yes The number (fraction or integer) that will be multiplied

by the specified cost in a given zone.

Marxan with Zones User Manual 5-56

An example of the zonecost.dat file is shown in Figure 13. In this example, two costs (costid

3 and 4) are applied to Zone 3 (zoneid 3) with a multiplier set to '10'. Zone 2 (zoneid 2) also

has two costs applied (costid 1 and 2), but costid 1 has a higher multiplier than costid 2. The

high multiplier is used to discourage planning units with high cost values from being

included in this zone (except where feature targets cannot be met elsewhere). There are no

costs associated with Zone 1, so entries with zoneid 1 are omitted from the file.

Figure 13. An example of the zonecost.dat file

5.3.7.1 Zone ID

Variable Name: zoneid

Required: Yes

Description: This is the zone identifier. It must be compatible with the Zones File

(zones.dat).

5.3.7.2 Cost ID

Variable Name: costid

Required: Yes

Description: This is the cost identifier. It must be compatible with the Costs File

(costs.dat).

5.3.7.3 M ultip lier

Variable Name: multiplier

Required: Yes

Marxan with Zones User Manual 5-57

Description: This number can be a fraction or an integer. In a given zone, it will be

multiplied by the specified cost. All costs in a given zone will be

multiplied by the specified multiplier and then added to give a total cost

for each planning unit. The use of weights allows the user to assign

different weightings to different costs. For example, if there are 3 costs

in one zone, the total cost for that zone would be calculated using the

following equation:

Total C = (C1 * M1) + (C2 * M2) + (C3*M3)

where C = cost and M = Multiplier

Marxan with Zones User Manual 5-58

5.4 Optional Input Files

This section describes the function, format, and associated variables of the optional input

files for Marxan with Zones:

 Boundary Length File (bound.dat)

 Zone Boundary Cost File (zoneboundcost.dat)

 Planning Unit Zone (puzone.dat)

 Planning Unit Lock File (pulock.dat)

 Zone Target (zonetarget.dat) and Zone Target 2 (zonetarget2.dat)

 Zone Contribution (zonecontrib.dat) and Zone Contribution 2 (zonecontrib2.dat)

These are all new files and unique to Marxan with Zones. The only exception is the

bound.dat file, which is one of the standard input files in Marxan.

If you wish to use any of these optional files, they must be included in the input folder

of your Marxan with Zones database and the associated file name must be entered in the

input.dat file (Marxan with Zones will only consider files included in the input.dat file).

5.4.1 Boundary Length File (bound.dat)

The Boundary Length File (bound.dat) contains information on the boundary ‘costs’ of two

planning units (i.e., the cost associated with the boundary between each planning unit). Like

standard Marxan, it is an optional file in Marxan with Zones. The file is only required when

the boundary length modifier (BLM) value in the input.dat file is set to ‘1’. An example of a

portion of a bound.dat file is shown in Figure 14.

Figure 14. An example of a portion of the Boundary Length File (bound.dat)

The bound.dat file must have three fields in the following order – id1, id2, boundary (Table

15). The values in the ‘boundary’ field are commonly the length of the boundary between a

pair of planning units (as identified in the ‘id1’ and ‘id2’ fields). Alternatively, it can be

modified to reflect the ‘cost’ of separating two planning units. The boundary values can be

Marxan with Zones User Manual 5-59

used to reflect the inverse distance and direction between two planning units. For an

example, see Hermoso et al. (2015).

Table 15. Variable names and requirements for Boundary Length File (bound.dat)

Variable Name Required Description

id1 Yes Planning unit identifier.

id2 Yes Planning unit identifier of the neighbouring planning unit to

id1 or the same as id1 for an irremovable boundary.

Boundary Yes The actual length of the boundary or the ‘cost’ of separating

two planning units.

5.4.1.1 P lanning Unit IDs

Variable Name: id1

id2

Required: Yes

Description: The ‘id1’ is the planning unit identifier. The ‘id2’is the planning unit

identifier of the neighbouring planning unit to ‘id1’. These do not have

to be adjacent planning units, though they usually are. See Section

5.4.1.2 and the MGPH for more details.

It is important not to duplicate boundaries as Marxan with Zones

will sum duplicate boundaries together when calculating the boundary

cost.

5.4.1.2 Boundary

Variable Name: Boundary

Required: Yes

Description: The value for the variable ‘boundary’ can be derived in a variety of ways

but it is essentially a relative measure of how important it is to include

one planning unit in the zoning system, given the inclusion of the other.

For instance, if the planning unit in the column, ‘id1’, has been added to

the system, how important is it that the planning unit in the column,

Marxan with Zones User Manual 5-60

‘id2’, is also included, and vice versa. Because this is analogous to a ‘cost’

that must be paid if both planning units are not included, this variable is

generally referred to as ‘boundary cost’.

Getting Started In its most typical application, boundary cost reflects the actual

geographical length of the boundary between two adjacent planning

units, and this is a good place to begin. This cost can, however, be easily

adjusted to reflect some other association between planning units, for

instance, based on distance and direction. For an example see Hermoso,

et al., 2015.

It is very important that if some relative measure, other than actual

boundary length is used, the chosen metric must be well justified.

Transparency and defensibility are two of the core strengths of

systematic conservation planning (also important in other spatial

planning applications). Two planning units that are not adjacent to each

other can still incur a ‘boundary cost’ if there is an important

relationship between them. For instance, if a species requires habitat

found in disparate planning units, either at different times of the year or

during different life stages, then it makes little sense to protect one and

not the other. This method could also be used to identify paths of

connectivity between planning units, for instance, larval transport in

marine systems, or hydrological flows in aquatic systems.

In some cases, there will be no possibility of removing a boundary by

including a neighbouring planning unit in the zoning system. This may

happen, for instance, at the edge of a territorial jurisdiction or mandated

planning region. Because planning units at the edge of a region will

generally have shorter ‘shared’ boundaries, selection may be biased

towards these planning units. This may be undesirable. To avoid biasing

the selection of these planning units, they should feature in the

Boundary Length File as ‘irremovable boundaries’. This can be

accomplished by specifying the length of a planning unit’s boundary

with itself, i.e. by repeating the same planning unit id in both the ‘id1’

and ‘id2’ columns.

The value entered in ‘boundary’ should always be ‘0’ or greater.

Although it is not generally necessary to specify cases where there is no

cost between planning units, a zero cost boundary can be useful if you

want to identify two planning units as neighbours but there is no actual

Marxan with Zones User Manual 5-61

boundary cost. This may be necessary if you have set minimum clump

sizes for some conservation features (see Section 5.3.2.5).

Consult the MGPH for more guidance regarding the bound.dat file.

Marxan with Zones User Manual 5-62

5.4.2 Zone Boundary Cost F ile (zoneboundcost .dat)

The Zone Boundary Cost File (zoneboundcost.dat) is a new and optional file for Marxan with

Zones. It can be used to prescribe the spatial relationship between zones. This is useful to

encourage further separation of conflicting uses (e.g., separate a forestry zone from a

protected area zone) or to cluster zones which share compatible management objectives

(e.g., place a buffer zone that is partially protected adjacent to a conservation zone that is

fully protected).

The file must have three fields in the following order – zoneid1, zoneid2, cost - sorted lowest

to highest by zoneid1, then by zoneid2 (Table 16). This file is similar to the bound.dat file but

relates the boundary ‘cost’ of zones rather than planning units.

Table 16. Variable names and requirements for Zone Boundary Cost (zoneboundcost.dat)

Variable Name Required Description

zoneid1 Yes Zone identifier.

zoneid2 Yes Zone identifier, different from zoneid1.

cost Yes The cost between zoneid1 and zoneid2.

 If the zoneboundcost.dat file is not present, all boundaries between zones will be

assigned a cost of ‘0’. Likewise, if a zone-zone boundary cost is not indicated in this file, it will

be given a cost of ‘0’.

An example of the zoneboundcost.dat file is shown in Figure 15. In this example, we want all

three zones be spatially compact. To do so, we are going to set a cost of 1 between each zone

combination. This is going to cause an aggregation of planning units that belong to the same

zone, because it is less costly than a spread of planning units that belong to different zones.

Figure 15. An example of the Zone Boundary Cost File (zoneboundcost.dat)

In practice, the zoneboundcost.dat file will need to be calibrated to determine appropriate

cost values for a given project. Guidance for calibrating the zone boundary cost is provided

in Box 8.

Marxan with Zones User Manual 5-63

5.4.2.1 Zone ID1

Variable Name: zoneid1

Required: Yes

Description: Zone identifier - must match the zone id indicated in the zones.dat file

for that zone.

5.4.2.2 Zone ID2

Variable Name: zoneid2

Required: Yes

Description: Zone identifier - must match the zone id indicated in the zones.dat file

for that zone.

5.4.2.3 Cost

Variable Name: Cost

Required: Yes

Description: The cost between zoneid1 and zoneid2. If cost is not indicated, a default

cost of ‘1’ will be assigned. This field accepts decimal values (e.g., 0.1)

and negative values (-1).

Getting Started: The zoneboundcost.dat file must be calibrated to determine the

appropriate cost values. See Box 8 for guidance on calibrating this

parameter in Marxan with Zones.

Marxan with Zones User Manual 5-64

Box 8. Calibrating the Zone Boundary Cost File

The aim for calibrating the zone boundary cost is to determine the multiplication factor

(or cost) needed to achieve different spatial arrangements of zones. Using the Rottnest

Island case study, we demonstrate a method to calibrate the zone boundary relationship

for spatially clumped zones. Recall that the zone boundary relationships are set in the Zone

Boundary Cost file (zoneboundcost.dat). For the Rottnest Island case study, the default

zoneboundcost.dat file is:

This can also be presented in matrix form as:

 Zone 1 Zone 2 Zone 3

Zone 1 (Multi Use) - 0 0

Zone 2 (Partial Protection) 0 - 0

Zone 3 (High Protection) 0 0 -

Each element in the matrix represents the boundary relationship between the pair of

zones referencing that element. When calibrating the zone boundary matrix, we always

set the relationship between any zone and itself to zero.

The following steps can be used to calibrate the Zone Boundary Cost to achieve spatially

clumped zones:

1. Run the system using the default matrix and view spatial output of solutions.

2. If you are not satisfied by the level of spatial clumping (see map below), increase the

“cost” between one zone and all the other zones by a small number. A good starting

point is to use values that allow the largest boundary between planning units to

become a similar order of magnitude to the most expensive planning unit. In the

Rottnest Island case study, the highest planning unit cost is 17 and the longest

boundary is 320, so you may want to start with a value no larger than 0.01.

Marxan with Zones User Manual 5-65

3. Run the system and view the spatial outputs of solutions. In this example, increasing

the cost between Zone 1 and Zone 3, along with Zone 2 and Zone 3, has forced Zone 3

to clump because it is more efficient (or least costly in terms of the boundary cost).

4. Steps 2 and 3 can be repeated until a desired level of clumping has been achieved for

a zone.

5. Increase the “cost” for the remaining zone combinations that have not achieved the

desired level of clumping. Run the system and view outputs. In the example below, the

cost between Zone 1 and Zone 2 has been increased to achieve clumping for Zone 2.

Marxan with Zones User Manual 5-66

6. Repeat steps 5 and 6 until all zones have achieved some level of clumping.

If the goal is to achieve a zone-nested configuration, that is, one zone to buffer around

another zone, then we need to increase the weights between the zones that we want to

keep apart. In example below, by applying a larger weight between Zone 1 and Zone 3, we

are forcing Zone 2 to become a buffer between the two zones.

 If the “cost” between pairs of zones is too high, then this may cause one zone to be

excluded from the zone configuration. In the example below, because the weights

between Zone 2 and any other zone are higher than any other combination of zones, is

forcing Zone 2 to be squeezed out of the zone configuration.

Marxan with Zones User Manual 5-67

5.4.3 P lanning Unit Zone File (puzone.dat)

The Planning Unit Zone File (puzone.dat) is an optional file for Marxan with Zones that can

be used to restrict certain planning units to two or more zones. For example, you may want

to restrict planning units with existing protected areas to zones that provide partial or full

protection of species and habitats.

Do not use this file to lock planning units to a single zone; use the Planning Unit Lock

File (pulock.dat) for this specific purpose.

The puzone.dat file must have two fields in the following order – puid, zoneid - sorted lowest

to highest by puid, then by zoneid (Table 17).

Table 17. Variable names and requirements for Planning Unit Zone (puzone.dat)

Variable Name Required Description

puid Yes Planning unit identifier that is restricted to a specific zone.

zoneid Yes Zone identifier that the planning unit in ‘puid’ is restricted to.

An example of the puzone.dat file is shown in Figure 16. In this example, the puzone.dat file

is being used to restrict two planning units (puid 1153 and puid 2997) to Zone 2 or 3.

Figure 16. An example of the Planning Unit Zone (puzone.dat)

5.4.3.1 P lanning Unit ID

Variable Name: puid

Required: Yes

Description: Unique identifier for the planning unit that is restricted to a specific

zone. The same planning unit can be listed more than once to indicate

restriction to more than one zone.

Marxan with Zones User Manual 5-68

5.4.3.2 Zone ID

Variable Name: zoneid

Required: Yes

Description: Zone identifier that the planning unit in puid is restricted to.

5.4.4 P lanning Unit Lock File (pulock .dat)

The Planning Unit Lock File (pulock.dat) is an optional file in Marxan with Zones that can be

used to restrict certain planning units to a single zone. For example, planning units

corresponding to land parcels with forestry permits could be locked into a forestry zone.

The pulock.dat file must have two fields in the following order – puid, zoneid - sorted lowest

to highest by puid (Table 18).

Table 18. Variable names and requirements for Planning Unit Lock (pulock.dat)

Variable Name Required Description

Puid Yes Planning unit identifier that is restricted to a specific zone.

Zoneid Yes Zone identifier that the planning unit in ‘puid’ is restricted to.

An example of a pulock.dat file is shown in Figure 17. In this example, the first two planning

units listed in the file are locked into Zone 2, whereas the last two planning units are locked

into Zone 3.

Figure 17. An example of the Planning Unit Lock File (pulock.dat)

5.4.4.1 P lanning Unit ID

Variable Name: puid

Required: Yes

Description: Unique identifier of the planning unit that is restricted to a specific zone.

Marxan with Zones User Manual 5-69

5.4.4.2 Zone ID

Variable Name: Zoneid

Required: Yes

Description: Zone identifier that the planning unit in ‘puid’ is restricted to.

5.4.5 Zone Target (zonetarget .dat) & Zone Target 2

(zonetarget2.dat) F iles

The Zone Target Files (zonetarget.dat and zontarget2.dat) are optional files in Marxan with

Zones. These files allow users to set targets for features in each zone (i.e., zone-specific

targets). This is useful when users want to separate conflicting features (e.g., conservation

features and fishing features) into appropriate zones. For example, targets for fishing

features can be set for a multi-use zone to ensure a certain proportion of fishing sites is

maintained for fishing activities.

However, zone targets are related to the overall targets in the Feature File (feat.dat) in a

sense, because the total zone targets for a given feature cannot be larger than the overall

target for that feature. For example, if the overall target for a conservation feature is 30%,

you can set 20% to be met in a high conservation zone, and 10% in a partial protection zone.

Unlike the feat.dat file, the zone targets are not related to the Zone Contribution file

(zonecontrib.dat or zonecontrib2.dat).

Zone targets can be used instead of, or at the same time as overall targets.

There are two types of Zone Target Files: zonetarget.dat and zontarget2.dat. Only one of the

files should be used. If both are used, the zonetarget2.dat file will override the zonetarget.dat

file. The function, structure, and difference between these files is described below.

Zone Target (zonetarget.dat): The zonetarget.dat file allows the user to set a target for each

feature in each zone (i.e. zone-specific target). It specifies which zone each target is to be met

in. The file must be sorted from lowest to highest value, first by the ‘zoneid’ field, and then

by the ‘featureid’ and ‘target’ fields (Table 19). The ‘target type’ field indicates whether the

target values are absolute amounts (0), proportions (1), occurrences (2), or occurrence

proportions (3).

Table 19. Variable names and requirements for Zone Target (zoneboundcost.dat)

Variable Name Required Description

zoneid Yes The zone identifier.

Marxan with Zones User Manual 5-70

featureid Yes The feature identifier.

target Yes The target amount (in unit of puvfeat.dat file), percentage,

occurrence or occurrence percentage of the feature to

include in the specified zone (i.e. zone-specific target).

targettype No Target type indicates the type of target specified in the

target column (i.e. amount, percentage, occurrence,

occurrence percentage).

An example of the zontarget.dat file is provided in Figure 18. In this example, we have three

features and three zones. Based on the Zone Target File (zonetarget.dat), we want to achieve

5% of Feature ID1 in Zone 1 and 5% in Zone 2, while for Feature ID2 and ID3 we want to

achieve their overall targets exclusively in Zone 2 and Zone 3 respectively.

Figure 18. An example of the Zone Target File (zonetarget.dat)

Zone Target 2 (zonetarget2.dat): This file is very similar to the zonetarget.dat file. Like the

zonetarget.dat, the zontarget2.dat file must include the ‘zoneid’ and ‘featureid’ fields (Table

20). Unlike the zonetarget.dat, the zonetarget2.dat file does not include the ‘featureid’ field.

As such, targets specified in the zonetarget2.dat apply to all features within the specified

zone.

Table 20. Variable names and requirements for Zone Target 2 (zoneboundcost2.dat)

Variable Name Required Description

zoneid Yes The zone identifier.

target Yes The target amount (in unit of puvfeat.dat file), percentage,

occurrence or occurrence percentage of the feature to

include in the specified zone (i.e. zone-specific target).

targettype No Target type indicates the type of target specified in the

target column (i.e. amount, percentage, occurrence,

occurrence percentage).

An example of a zonetarget2.dat file is provided in Figure 19.

Marxan with Zones User Manual 5-71

Figure 19. An example of zonetarget2.dat

5.4.5.1 Zone ID

Variable Name: zoneid

Required: Yes

Description: The zone identifier.

5.4.5.2 Feature ID (only applicable to the zonetarget.dat file)

Variable Name: featureid

Required: Yes

Description: The feature identifier. This variable is only required in the

zonetarget.dat file. It is not present in the zonetarget2.dat file.

5.4.5.3 Target

Variable Name: target

Required: Yes

Description: The target amount (in unit of puvfeat.dat file), percentage, occurrence

or occurrence percentage of the feature to include in the specified zone

(i.e. zone-specific target).

Getting started Zone-specific targets are typically used when there is a need to separate

competing objectives in different zones, for example conservation

objectives and resource extraction (see Mazor et al., 2014). They have

also been used to explore trade-offs between achieving conservation

targets and socio-economic interests (see Klein et al., 2010).

Marxan with Zones User Manual 5-72

5.4.5.4 Target Type

Variable

Name:

featureid

Required: Yes

Description: Target type indicates the type of target specified in the target column

(i.e. amount, percentage, occurrence, occurrence percentage). If this

column is not included, Marxan with Zones will use a default of ‘0’.

Target type values:

0 = Amount (in unit of puvfeat.dat file) target of feature. Similar to

‘target’ in the feat.dat file.

1 = Percentage target as proportion of total amount of feature. Similar

to ‘prop’ in the feat.dat file.

2 = Occurrence target. If the feature occurs in a planning unit, regardless

of its amount, it is considered one occurrence. Similar to ‘targetocc’ in

the feat.dat file.

3 = Percentage target as proportion of total occurrences of feature.

Similar to ‘propocc’ in feat.dat.

Marxan with Zones User Manual 5-73

Box 9. Zones target setting in Rottnest Island case study

The goal here is to create a multiple use park system made up of three management

zones where different activities are allowed to take place in each zone:

 Zone 1 or Resource Extraction Zone, where only commercial fishing activities are

allowed

 Zone 2 or Recreational Activities Zone, where only recreational activities such as

diving and snorkeling are allowed.

 Zone 3 or Conservation Zone, where no human activities are allowed and where

conservation objectives can be met.

Using the Zone Target file in Marxan with Zones we can set zone-specific targets and set

restrictions for each of the zones. And example of how these zone targets can be

specified below:

 Zone 1 Zone 2 Zone 3

Conservation Features 0 0 0.3

Recreational Features 0 0.8 0

Extractive Features 0.8 0 0

The corresponding zonetarget.dat file that would be used in this scenario is shown below:

Marxan with Zones User Manual 5-74

5.4.6 Zone Contribution (zonecontrib .dat) & Zone Contribution 2

(zonecontrib2.dat) F iles

The Zone Contribution (zonecontrib.dat) and Zone Contribution 2 (zonecontrib2.dat) files

are not required to run Marxan with Zones, although one of these files must be used if an

overall target is specified in the Feature File (feat.dat). The feat.dat and zonecontrib.dat (or

zonecontrib2.dat) files work in tandem with each other. The feat.dat specifies the overall

target of features, while the zoncontrib.dat (or zoncontrib2.dat) specifies differential

contribution rates to the overall target. If Marxan with Zones is run without specifying the

zone contribution, the target for each feature in the feat.dat file will be met across all of the

zones, and each zone will contribute at 100% to meeting the target.

The Zone Contribution Files are not related to the Zone Target Files.

The structure and function of the Zone Contribution (zonecontrib.dat) and Zone

Contribution 2 (zonecontrib2.dat) files are described below, along with the different

between the two versions.

Zone Contribution (zonecontrib.dat): This file allows you to set (by percentage) the level

of contribution of each feature in each zone. This is useful if you have several different types

of features and if you want the overall target to be met across multiple zones. This file must

contain three fields: zoneid, featureid and fraction (Table 21).

Table 21. Variable names and requirements for Zone Contribution (zonecontrib.dat)

Variable Name Required Description

zoneid Yes The zone identifier.

featureid Yes The feature identifier.

fraction Yes The contribution fraction for this feature in this zone as

applied to the overall target specified in the feature file.

An example of the Zone Contribution File is shown in Figure 20. In this example, the contents

of a planning unit in Zone 1 can contribute 50% towards meeting recreation targets (e.g.,

surfing and diving) and 100% towards meeting fishing targets (e.g., trolling). The contents

of a planning unit allocated in Zone 2 can only contribute at meeting recreational targets,

while planning units allocated to Zone 3 can only contribute at meeting conservation feature

targets (e.g., coral and fish species).

Marxan with Zones User Manual 5-75

Figure 20. An example of the Zone Contribution File (zonecontrib.dat)

Zone Contribution 2: The "zonecontrib2.dat" file allows users to specify a contribution

fraction for each zone. It contains the same ‘zoneid’ and ‘fraction’ fields as the

zonecontrib.dat file, but it does not include the ‘featureid’ field (Table 22).

Table 22. Variable names and requirements for Zone Contribution 2 (zonecontrib2.dat)

Variable Name Required Description

zoneid Yes The zone identifier.

fraction Yes The contribution fraction for all features in this zone as

applied to the overall target specified in the feature file.

This file should be used if all features in a zone have the same contribution fraction. An

example of the zonecontrib2.dat file is shown in Figure 21.

Figure 21. An example of the Zone Contribution 2 File (zonecontrib2.dat)

5.4.6.1 Zone ID

Variable Name: Zoneid

Required: Yes

Description: The zone identifier.

5.4.6.2 Feature ID (only applicable to the zonecontrib.dat file)

Marxan with Zones User Manual 5-76

Variable Name: featureid

Required: Yes

Description: The feature identifier. This variable is only required in the

zonecontrib.dat. It is not present in the zonecontrib2.dat.

5.4.6.3 Fraction

Variable Name: fraction

Required: Yes

Description: This is the contribution fraction. Negative contributions are not allowed.

Zone contribution: The contribution fraction for this feature in this zone

as applied to the overall target specified in the feature file.

Zone contribution 2: The contribution fraction for all features in this

zone as applied to the overall target specified in the feature file.

Getting started Zone contributions are used to incorporate how effective (either

ecologically or based on management actions) different zones are at

meeting set objectives, be either conservation objectives or other socio-

economic objectives. Incorporating zone effectiveness requires

information on how effective each zone is at helping achieve the targets

specified. However, this information is often not available because it is

costly and time consuming to acquire (Makino et al., 2013). Often,

scenarios are used to explore a range of different contribution levels to

analyze this affect the location and cost of spatial priorities for different

zones. Using expert knowledge to inform zone effectiveness can be very

valuable in absence of empirical data (Mills et al., 2011).

Marxan with Zones User Manual 5-77

Box 10. Zones contributions setting in Rottnest Island case study

In this scenario, we continue with the multi-use park system and the three different

management zones with different levels of protection:

 Zone 1 or Multiuse Zone

 Zone 2 or Partial Protection Zone

 Zone 3 or Full Protection Zone

Because each zone has different levels of protection each will contribute differently at

meeting overall conservation targets (e.g., 30% of each conservation feature). For

example, if a conservation feature is in Zone 3 (full protection) the amount of that feature

will contribute fully (that is, 100%) to meeting the overall target for that feature (e.g., if

100 m2 of seagrass in present in Zone 3, then the total contribution is also 100 m2 when

meeting 30% of the overall seagrass conservation target). However, if a conservation

feature is found in Zone 2, then the amount of that feature will contribute only 20% to

meeting the overall target for that feature (e.g., if 100 m2 of seagrass is present in Zone 2,

only 20 m2 will count towards meeting 30% of overall seagrass conservation target).

Because Zone 1 does not guarantee any level of protection, no amount of conservation

features found in this zone will contribute at meeting overall conservation targets. Zone

contributions set for conservation features are summarized in the table below:

 Zone 1 Zone 2 Zone 3

Conservation Features 0% 20% 100%

In this scenario, the zone contributions file (zonecontrib2.dat) would be set as outlined

below:

Marxan with Zones User Manual 6-78

6 Running the Software

Running the Marxan with Zones program is extremely simple. Once all the input files are

ready, you simply need to double click on the ‘MarxanZone.exe’ file and the program will

start automatically. To run successfully, however, the folder containing the program must be

set up so that Marxan with Zones can find the required files and save the necessary outputs.

If Marxan with Zones executes successfully (Figure 22 displays a screen output of a

successful run), a program screen showing information on the details and progress of each

run will be displayed (unless Silent Running has been selected; see Section 5.3.1.13 and

Section 7.3). Do not worry if this proceeds too quickly for you to read. All the necessary

details will be saved in the output file folder in the Screen Log File, called ‘output_log.dat’

(see Section 7.4.10). When Marxan with Zones completes the pre-set number of runs, it will

stop, and the program screen will remain visible. Pressing ‘Enter’ will exit the program and

close the screen.

If Marxan with Zones closes prematurely or halts with an error message, it is likely to

mean there is a problem with the format of one or more input files (see Appendix A for more

information).

Figure 22. A successful run in MarxanZone.exe

Marxan with Zones User Manual 7-79

7 Outputs

7.1 Overv iew of Output Files

Marxan with Zones can generate a variety of outputs, including multiple solutions for zoning

configurations. The Input Parameter File (input.dat) is used to specify which outputs Marxan

with Zones should save, along with the format for saving them (.csv, .dat, or .txt). The

different types of outputs are described in Section 7.4.

When interpreting outputs, it is important to remember that Marxan with Zones provides

decision support and is not the decision maker. The software does not provide the ultimate

solution, and many of the input parameters require experimentation. Each output solution

should be subject to visual inspection, and local knowledge should be incorporated to update

and improve future runs. Sensitivity analysis of key parameters can further improve the

robustness of results. See Section 8 for more guidance for interpreting results.

7.2 Output File Managem ent & Form at

In the Input Parameter File (input.dat), the ‘OUTPUTDIR’ is used to tell Marxan with Zones

the name of the folder where it should save the output files. We suggest using the default

folder name ‘output’ and then changing the file name once the run is complete.

Output files can be saved with a .dat, .txt., or .csv extension. The desired file format of each

output file is specified by the user in the input.dat file. We recommend using the extension

.csv for most output files. Exceptions include the Screen Log File and the Scenario Details

File, which should be saved as a .txt or .dat format.

Marxan with Zones does not generate any mapped results, although solutions and other

outputs (e.g., summed solution) can be visualised within select supporting software, such as

Zonae Cogito, or with the use of GIS software like ArcGIS (www.esri.com) and QGIS

(www.qgis.org). Basic instructions for visualizing key outputs in ArcGIS or QGIS are provided

in information boxes in Section 7.4.

file:///D:/Dropbox/MarxanManualContract_TNC/Marxan%20with%20Zones/www.esri.com
file:///D:/Dropbox/MarxanManualContract_TNC/Marxan%20with%20Zones/www.qgis.org

Marxan with Zones User Manual 7-80

7.3 Screen Output

As Marxan with Zones runs, some outputs can be displayed on the screen. For the screen

output, users can choose between four levels of information: 0 (Silent Running), 1 (Results

Only), 2 (General Progress), and 3 (Detailed Progress). The level of information is termed the

‘verbosity level’ and is set using the VERBOSITY variable in the Input Parameter File

(input.dat), as previously described in Section 5.3.1.13. The default setting is level 2 and is

recommended for most cases.

If the verbosity level is set to ‘0’, then no information about the scenario will be displayed on

the screen. This option should only be used if you are confident in Marxan with Zones

execution and if you are saving all necessary outputs manually.

Level 1 provides a bit of information, displaying the run numbers and the time it took to

generate all runs. Each run number will appear on the screen as Marxan with Zones

generates a final solution for that run. While no information about each run is provided, the

run numbers lets you know how many runs have been completed and can give you an idea

of how long it may take to complete all the runs (e.g., if it takes one minute to complete a

single run, then it will take 100 minutes to complete 100 runs).

Levels 2 and 3 will display the run numbers and more time measures, along with details on

the data being entered, information on the initial solution, and results of the solution for each

run (see Table 23 for a description of summary information for each run). If adaptive

annealing is being used, the annealing parameters calculated during pre-processing (initial

temperature and decrement) will also be displayed on the screen. If simulated annealing is

being used and the verbosity is set to ‘3’, the screen will include information about the

current configuration score each time the temperature is decremented.

Table 23. Basic summary information of each run

Information Description

Run The number of the repeat run (e.g., Run 1, Run 2, Run 3, etc.)

Value The overall objective function value for the solution

Cost The cost of the solution; i.e., the sum of the costs of all planning units in the

solution in the units of the cost field in the pu.dat file

Zonename The number of planning units in that zone

Connection The boundary ‘cost’ (or connection strength) of the solution

Missing The number of features that did not achieve their targets in the solution

Shortfall The amount by which the targets for features have not been met

Penalty The penalty added to the objective function for not meeting all feature targets

MPM The minimum proportion met (MPM) for the worst performing feature

Marxan with Zones User Manual 7-81

We recommend using at least level 2 for the following reasons. First, if you a running more

than one optimisation procedure (i.e., simulated annealing followed by iterative

improvement), the higher verbosity levels allow you to get a feel for how much work each of

the different procedures is doing. For instance, if most of the gains in value and target

achievement are being made in the iterative improvement phase, you know that either the

annealing parameters or the penalties need alteration. Second, if you want to begin using a

fixed annealing schedule, this output can give you an idea of the sort of values Marxan with

Zones is calculating using its adaptive annealing module. Finally, if you have set some

constraints on the initial solution, this output will quickly confirm that this information is

being included.

We recommend keeping the verbosity to its default setting (i.e., Level 2), as level 3 typically

provides more detail than is necessary and can increase the processing time. However, level

3 can be set to help identify certain problems (e.g. if the numbers do not change and it is

“stalled”) as it allows users to observe the annealing progress. For this reason, some users

prefer to use this setting to visually check that the program appears to be running well.

Note that you can save the screen output as an output file, called Screen Log File (see Section

7.4.10 for more information), to look at it after Marxan with Zones has finished running.

Figure 23. Example of the screen output with verbosity level 0 (Silent Running)

Marxan with Zones User Manual 7-82

Figure 24. Example of the screen output with verbosity level 1 (Results Only)

Figure 25. Example of the screen output with verbosity level 2 (General Progress)

Figure 26. Example of the screen output with verbosity level 3 (Detailed Progress)

Marxan with Zones User Manual 7-83

Box 11. Example of Summary Information on the Screen Output

The following is an example of a basic summary information line displayed on the screen

(included in verbosity level 2 and 3):

Run 1 indicates that this is the first run of the algorithm. As illustrated here, the run number

may not appear on the same line as the valuation of the solution.

Value 189569.5 is the cost plus the boundary value plus the penalty for missing features.

Because the penalty is included in this value, the meaning of the value requires

interpretation.

Cost 24456.7 is the cost for the solution. It is the sum of the costs of all planning units in

the solution in the units of the cost field in the pu.dat file.

Zone1, Zone2, and Zone3 corresponds to the number of planning units in the associated

zone. All zones will be listed in the summary line as the zone name indicated in the

zones.dat file. The planning units in the zones will sum to equal the total number of

planning units in the solution (i.e., 2121 + 1071 + 1045 = 4,237 planning units).

Connection 165112.9 is the boundary cost (or connection strength) of the solution.

Missing 0 is the number of objectives which are under-represented in the solution. These

objectives are the targets defined in the feat.dat and zonetarget.dat files. They are

screened according to the ‘MISSLEVEL’ parameter in the input.dat file.

Shortfall 0 is the total target amount (based on zone targets and/or zone contributions)

not achieved for all feature targets.

Penalty 0 is the penalty for not meeting representation targets (zone targets and/or zone

contributions) for all the features. If features have met their targets, as is the case here,

then it will be 0.0.

MPM 1 is the minimum proportion met (MPM) for the worst performing feature, which in

this case is ‘1’ based on the ‘MISSLEVEL’ parameter set in the input.dat file.

Marxan with Zones User Manual 7-84

7.4 Output Files

Marxan with Zones can generate several different output files. The files generated will

depend on what is specified in the ‘Save Files’ section of the Input Parameter File (input.dat).

Table 24 list all the possible output files and identifies the corresponding variable name in

the input.dat file. It also includes examples of file names. Where a number is included in the

file name (e.g. output_r001.csv), this is the run number (or solution number) that generated

that particular output.

Table 24. Output file types and names

Example File Name Corresponding Variable Name in

input.dat

Description

output_r001.csv SAVERUN Solutions for each run

output_best.csv SAVEBEST Best solution for all

runs

output_mv001.csv SAVETARGETMET Missing value

information for each

run

output_mvbest.csv SAVETARGETMET Missing value

information for the

best run

output_sum.csv SAVESUM Summary information

output_sen.txt SAVESCEN Scenario details

output_ssoln.csv SAVESUMSOLN Summed solution

output_solutionsmatrix.cvs SAVESOLUTIONSMATRIX Planning units selected

in for each run

output_penalty.csv SAVEPENALTY Penalty values for each

feature for all runs?

output_log.txt SAVELOG Screen log file

output_

zoneconnectivitysum00001.csv

output_

zoneconnectivitysumbest.csv

SAVEZONECONNECTIVITYSUM Zone connectivity sum

The examples of file names in Table 24 all begin with the prefix ‘output’, which is the default

value for the SCENNAME in the input.dat file. However, the file prefix can take on whatever

name is specified by the user for variable SCENNAME. For example, if ‘scenario1’ is set for

Marxan with Zones User Manual 7-85

the SCENNAME variable, then all output files will be saved with the file name prefix

‘scenario1’ (e.g., scenario1_r001.csv).

The following subsections describe each of the output files in detail.

7.4.1 Solution for Each Run

Name in input.dat: SAVERUN

Example of output file name: output_r001.csv, where ‘output’ is the name supplied by the

user in the SCENNAME parameter of the input.dat file.

We recommend saving this file as .csv (use code 3 in the input.dat file; see Section

5.3.1.9), a format that can be imported into a GIS environment and then joined to the

planning unit shapefile for visualization of results.

Description: A Solution File is produced for each run of the algorithm, so each file

corresponds to a unique run. For a given solution, the file identifies which planning units

were selected in each zone. The run number associated with the file is indicated by the

number included in the file name (e.g., output_r005 corresponds to run 5).

The file has two fields, ‘planning_unit’ and ’zone’. Each row has a planning unit identifier (in

the ‘planning_unit’ field), followed by the zone identifier (in the ‘zone’ field) that identifies

the zone that has been assigned to that planning unit.

An example of a portion of the Solution File is provided in Figure 27. In this example, there

are 5879 planning units, all of which have either been assigned to Zone 1, 2, or 3 for Run 1.

Figure 27. An example of a subset of a solution file (e.g., output_r001.csv)

7.4.2 Best Solution

Name in input.dat: SAVEBEST

Example of output file name: output_best.csv, where ‘output’ is the name supplied by the

user in the input.dat file.

Marxan with Zones User Manual 7-86

We recommend saving this file as .csv (use code 3 in the input.dat file; see Section

5.3.1.9), a format that can be imported into a GIS environment and then joined to the

planning unit shapefile for visualization of results.

Description: The Best Solution File is the same as the Solution File described above (Section

7.4.1), but it corresponds to the run that produced the solution with the lowest score. It is

important to remember that the best run is only superior regarding the objective function

score, which may only be marginally better than the other solutions. It may not represent

the best zoning system for implementation. Thus the ‘best’ has a very narrow meaning here

and should not be communicated to stakeholders or decision-makers as the ideal solution.

Rather, it should be viewed and presented as a very good solution, within a continuum of

zoning options. More discussion on this topic can be found in the MGPH.

Box 12. How to Visualize the Solution of a Given Run in QGIS or ArcMap

Marxan with Zones does not generate mapped outputs. However, the solutions generated

by the software (i.e., the solution for each run or the ‘best’ solution) can be visualized

using a GIS software, such as QGIS or ArcGIS. The following instructions outline basic steps

to visualize a solution in QGIS or ArcGIS.

 Step 1: Open ArcMap or QGIS and add the spatial file that contains your planning unit

layer (e.g., a grid polygon shapefile).

 Step 2: Add the solution file (e.g., output_r001.csv) to your project and append it to

your planning unit layer using the planning unit id field available in both files.

 Step 3: Export the planning unit layer with the new appended information to make the

linkage permanent, then add the new layer to your project.

 Step 4: Visualize the solution by setting different colors for unique values in the ‘zone’

field, where each value represents a different zone.

Marxan with Zones User Manual 7-87

7.4.3 Missing Va lues for Each Run

Name in input.dat: SAVETARGMET

Example of output file name: output_mv001.csv, where ‘output’ is the name supplied by the

user in the input.dat file.

We recommend saving this file as .csv (use code 3 in the input.dat file, see Section

5.3.1.9), so it can be easily opened in Excel or a similar program.

Description: This file contains information on how well the final solution from each run did

in terms of meeting targets. A Missing Values File is produced for each run. The run number

associated with the file is indicated by the number in the file name (e.g., output_mv005

corresponds to run 5). The Missing Values File includes the following fields: feature, feature

name, target, total amount, contributing amount held, occurrence target, occurrences held,

and target met (Table 25).

Table 25. Description of Missing Value File Headers

Header Description

Feature The unique identifier of the feature, indicated in feat.dat

Feature Name The optional name for the feature, indicated in feat.dat

Target The target amount for the feature, indicated in feat.dat

Total Amount Total amount of the feature in the study region

Contributing Amount Held Amount of the feature captured multiplied by the feature’s

contribution fraction for the zone it is captured in

Occurrence Target The targeted number of occurrences for the feature

Occurrences Held Number of occurrences of the feature captured

Target Met An alphabetic variable that returns ‘yes’ if all the targets set for that

feature are met, otherwise it returns ‘no’

Target Zone #* The target amount for the feature in zone 1, indicated in

zonetarget.dat

Amount Held Zone #* Amount of the feature captured in zone 1

Contributing Amount Held

Zone #*

Amount of the feature captured in zone 1 multiplied by the features

contribution fraction in zone 1

Occurrence Target Zone #* The target number of occurrences for the feature in zone 1,

indicated in zonetarget.dat

Occurrences Held Zone #* The number of occurrences of the feature captured in zone 1

Target Met Zone #* ‘Yes’ if both targets above are met, otherwise ‘no’

MPM Minimum Proportion Met

Marxan with Zones User Manual 7-88

* These field will be replicated for each zone. For Zone 1, the headers are Target Zone 1, Amount Help Zone 1,

Contributing Amount Held Zone 1, Occurrence Target Zone 1, Occurrence Held Zone 1, and Target Met Zone 1.

An example of the missing values file is shown in Figure 28. In this example, overall targets

were not set in the feat.dat file. Zone targets were specified for different features and zones

in the zonetarget.dat file. For example, features 7 to 10 (i.e., FEAT7, FEAT8, FEAT9, FEAT10)

had zone targets set for Zone 1, features 4 to 6 had zone targets for Zone 2, and features 1 to

3 has zone targets for Zone 3. As shown in the ‘Target Met’ field for Zone 1, all of the zone

targets were met in this zone. The ‘Target Met’ field for the remaining zones show that

targets were met for 2 of 3 features for Zone 3 and only 1 of 3 features for Zone 2. In the

example, the Occurrence Target fields are all ‘0’ values because occurrence targets were set

in the feat.dat file. Zone contributions were set for Zone 2 and Zone 3, but not for Zone 1.

Figure 28. An example of a missing values file (e.g., output_mv001.csv), shown in two parts

for demonstration purposes

7.4.4 Missing Va lue Inform ation for the Best Run

Name in input.dat: SAVETARGMET

Example of output file name: output_mvbest.csv, where ‘output’ is the name supplied by the

user in the input.dat file.

Marxan with Zones User Manual 7-89

We recommend saving this file as .csv (use code 3 in the input.dat file, see Section

5.3.1.9), so it can be easily opened in Excel or a similar program.

Description: This file is the same as the Missing Values File described above (Section 7.4.3)

except it is for the ‘best’ solution (i.e., the solution with the lowest objective function score).

7.4.5 Sum m ary Inform ation

Name in input.dat: SAVESUM

Example of output file name: output_sum.csv, where ‘output’ is the name supplied by the

user in the input.dat file.

We recommend saving this file as .csv (use code 3 in the input.dat file, see Section

5.3.1.9), so it can be easily opened in Excel or a similar program.

Description: This file contains summary information on each repeat run. It basically provides

a report on how the solutions performed relative to the targets. The file contains multiple

fields (Table 26). The last three fields (penalty, shortfall, and missing values) are particularly

useful for examining solutions where some features have not met their target. Note that it is

possible to have a high penalty and still be very close to the targets, particularly if the feature

penalty factor for targets have been set very high. The shortfall is a good indication of

whether the features are very close or very far from their targets. The number of missing

values gives further information along this vein. If there are five features which each have

missed their targets, but the combined shortfall is very small, then they could all be only

narrowly missing their targets (e.g., ≥99%) and the user might not be particularly concerned.

An example of the Summary File is shown in Figure 29. In this example, there are three zones

and ten repeat runs. Note that the PuCount and Cost fields are repeated for each zone.

Figure 29. Example of the summary output file (output_sum.dat)

Marxan with Zones User Manual 7-90

Table 26. Description of Summary File Headers

Header Description

Run Number The run number for that line.

Score The objective function score for the solution from that run. This value is the

sum of the Cost, the Connectivity Strength, and the Penalty. This field is useful

to identify the run with the lowest score or the ‘best solution’.

Cost Total cost value of the run given by the cost or costs values associated with

each planning unit.

Planning Units Number of planning units in the planning area.

PuCount* Number of planning units in the solution for each zone.

Cost* The total cost of planning units for each zone.

Connectivity

Strength

Boundary cost of the solution. This is the penalty applied when two planning

units belonging to the same zone are not adjacent to each other. If the

boundary length is not included or the BLM is set to ‘0’, then this value would

read ‘0’. Section 1.4 explains how this value is calculated.

Penalty The penalty score for missing feature targets for the solution. If all features are

adequately represented (that is, have met zone targets and/or zone

contributions), then the penalty value will be ‘0’. This value gives an indication

of the cost required to meet remaining targets. This is something that is not

captured simply by looking at the shortfall. It is also used to rank the success

of runs, looking only at those solutions that have a low penalty. Section 1.4

explains how this value is calculated.

Shortfall The amount by which the targets (zone targets and zone contributions) for

features have not met in the solution for that run. The shortfall reported here

is the total shortfall summed across all conservation features. The shortfall is a

good indication of whether missing features are close or far from their targets.

If there are a number of features which have missed their target but the

combined shortfall is very small, then the planner might not be too concerned.

Missing Values The number of features that have not met their target in the final solution for

that run and across all zones. This is screened according to the MISSLEVEL

variable set in the Input Parameter file (see Section 5.3.1.11). If the missing level

is set to ‘1’, then every feature which falls below its target level is counted as

missing. If the missing level is lower than ‘1’ (e.g., 0.98), Marxan with Zones may

not report a feature as missing even if the solution contains slightly less than the

target amount.

MPM The Minimum Proportion Met (MPM) for the worst performing feature. This

value corresponds to the lowest MPM value in the missing value file for that run

number.

Marxan with Zones User Manual 7-91

*Field repeated for each zone.

7.4.6 Scenario Deta ils

Name in input.dat: SAVESCEN

Name of output file: output_sen.dat, where ‘output’ is the name supplied by the user in the

input parameter file.

This file can be saved as a .dat file (use code 1 in the input.dat file, see Section 5.3.1.9).

Files with a .dat extension can be opened with Notepad or similar programs.

Description: This file documents the major parameter values for that scenario. This file is

useful to keep track of the parameters that produced certain results, especially when

multiple scenarios are run. The information can help determine appropriate values for

commonly modified parameters. An example of the file is shown in Figure 30.

Figure 30. Example of the scenario details output file (output_sen.dat)

7.4.7 Sum m ed Solution

Name in input.dat: SAVESUMSOLN

Example of output file name: output_ssoln.csv, where ‘output’ is the name supplied by the

user in the input.dat file.

We recommend to save this file as .csv (use code 3 in the input.dat file, see Section

5.3.1.9) to it can be easily imported to a GIS environment for its visualization.

Marxan with Zones User Manual 7-92

Description: This file is the summed solution of all individual runs in a scenario. It indicates

how often a planning unit was included in an individual zone. It is a useful way to explore the

irreplaceability of planning units in a zone.

The file has a ‘planning unit’ and a ‘number’ field, as well as an additional field for each zone.

Each line has a planning unit identifier (in the planning unit field), followed by the number

of runs (in the ‘number’ field), and the number of times that planning unit was assigned to

an individual zone (e.g., Zone 1).

An example of a portion of this file is shown in Figure 31. In this example, the planning unit

identifier 5875 was assigned to Zone 1 in 7 out of 10 runs, in Zone 2 in 3 out of 10 runs, and

never selected as part of Zone 3.

Figure 31. Example of a subset of the summed solution output file (output_ssoln.csv)

Marxan with Zones User Manual 7-93

Box 13. How to visualize the summed solution in QGIS or ArcMap

Marxan with Zones does not provide a map version of the Summed Solution File (i.e., the

selection frequency), although the file can be mapped and visualized externally using a

GIS software, like QGIS or ArcGIS. The following instructions outline the basic steps to

visualize the selection frequency in QGIS or ArcGIS.

 Step 1: Open ArcMap or QGIS and add the spatial file that contains your planning unit

layer (e.g., a grid polygon shapefile).

 Step 2: Add the Summed Solution File (e.g., output_ssoln.csv) to your project and

append it to your planning unit layer using the planning unit identifier field available in

both files.

 Step 3: Export the planning unit layer with the new appended information to make the

linkage permanent, then add the new layer to your project.

 Step 4: The selection frequency for each zone should be mapped and visualized

separately. Visualize the selection frequency for a given zone by using graduate colors

and displaying the values in the ‘zone#’ field. It is recommended to visualize ‘0’ values

in their own class.

Marxan with Zones User Manual 7-94

7.4.8 Solution Matrix

Name in input.dat: SAVESOLUTIONSMATRIX

Example of output file name: output_solutionsmatrix_zone1.csv, where ‘output’ is the

name supplied by the user in the input.dat file.

We recommend saving this file as .csv (use code 3 in the input.dat file, see Section

5.3.1.9) so it can easily be opened in Excel or a similar program.

Description: This file will be generated for each zone (e.g., if there are three zones, three

solution matrix files will appear in the output folder, one for each zone). For a given zone,

the file records which planning units were selected in that zone for all runs. This file is a

useful way to export information on planning unit selection for cluster analysis in R or other

statistical software packages.

If the SOLUTIONSMATRIXHEADERS variable in the input.dat file has a value of ‘1’, a header

row is included in the file. If you choose to include the header row, a list of the planning unit

identifiers will be added in the first row. Subsequent rows will include information for each

solution produced in the analysis. Each matrix cell corresponds to a planning unit and

solution. Matrix cells with a value of ‘1’ indicate that the planning unit in that solution was

assigned to the zone for the file, and vice-versa for ‘0’ values. An example of this file is

presented in Figure 32.

Figure 32. Example of a subset of the solution matrix output file

(output_solutionmatrix_zone1.csv)

7.4.9 Pena lty F ile

Name in input.dat: SAVEPENALTY

Name of output file: output_penalty.dat, where ‘output’ is the name supplied by the user in

the input.dat file.

Marxan with Zones User Manual 7-95

Description: This file contains the penalty computed by Marxan with Zones for all features

in an individual run in a scenario. It indicates how expensive it was to satisfy the targets for

a feature. It is useful for understanding the relative difficulty Marxan with Zones has in

meeting the targets for features.

7.4.10 Screen Log File

Name in input.dat: SAVELOG

Example of output file name: output_log.dat, where ‘output’ is the name supplied by the user

in the input.dat file.

This file can be saved as .dat file (use code 1 in the input.dat file, see Section 5.3.1.9).

Files with .dat extension can be opened with Notepad or similar software.

Description: This text file contains exactly what was displayed as the screen output while

running Marxan with Zones (see Section 7.3). This can be useful in de-bugging, or if for

instance, you want to go back through the runs to investigate how much work is being done

during the simulated annealing phase relative to iterative improvement.

7.4.11 Zone Connectiv ity Sum

Name in input.dat: SAVEZONECONNECTIVITYSUM

Example of output file name: output_zoneconnectivitysum00001.csv and

output_zoneconnectivitysumbest.csv, where ‘output’ is the name supplied by the user in

the input parameter file.

Description: Connectivity value between zones for each solution and for the best solution.

An example of this file is presented in Figure 33.

Figure 33. Example of a subset of the solution matrix output file

(output_solutionmatrix_zone1.csv)

Marxan with Zones User Manual 8-96

8 Good Practices

8.1 Overv iew

This manual should provide you with all the information you need to complete a Marxan

with Zones analysis. Ensuring that your analyses are robust and defensible is beyond the

scope of this document. In this section, we mention some of the things you must be prepared

to undertake in order to ensure that Marxan with Zones delivers quality, defendable outputs.

We also provide advice for communicating Marxan with Zones results to stakeholders and

decision makers. As previously stated, we strongly encourage you to read the MGPH and

relevant literature before undertaking Marxan with Zones analyses.

8.2 Experim entat ion

The most important thing to remember is that Marxan with Zones does not provide ‘one-

stop’ zoning solutions. As outlined in this manual (see Section 3.3), many of the parameters

will require experimentation before you can expect Marxan with Zones to deliver reasonable

solutions (e.g., what FPF value, if any, can ensure that all feature targets are meet). Each

parameter should ideally be set in a stepwise and systematic manner. However, this can be

challenging as parameters are not independent of each other. Parameters can often interact

in unexpected ways. Similarly, changes to your input data can mean that the parameter

values should be re-calibrated.

Various methods have been suggested to help select appropriate Marxan with Zones

parameter values. However, there is no substitute for simply exploring as many scenarios as

your project time and budget permit and ensuring that there is adequate time allocated for

these experimentations. Understanding your data and problem construction well will help

you gain expertise and familiarity with how Marxan software works.

8.3 Visual Inspection

Although visual display is perhaps the most basic and often subjective of post-processing

procedures, the power of the human eye to see visual trends should not be underrated and

can detect issues that can be missed with sophisticated spatial statistics. Available data are

not always ideal and there are many subtleties of spatial planning that cannot be

incorporated into Marxan with Zones.

Marxan with Zones User Manual 8-97

Knowledge of your planning region will help avoid obvious errors in zoning systems. The

knowledge of any problems should be used to update future scenarios being run in Marxan

with Zones. Simply modifying a solution at the end of an analysis is likely to lead to both

inadequacies and inefficiencies in the solution.

To help the visual inspection process, it can be useful to visually compare the solutions with

your data layers. For instance, you may notice that solutions are primarily driven by the

distribution of costs rather than features, or that the distribution of only a few features

largely explains the shape of the solutions. While these are not necessarily problems, they

are very good to know, and can influence the next iteration of selecting parameter values.

8.4 Sensit iv ity Analyses

Even if you are happy with the quality of the zoning system solutions derived via Marxan

with Zones, it is important to consider how the solutions would change if some of the

scenario details changed. If for example, small changes in your cost data lead to large changes

in the optimal zoning system, then you would want to ensure that your use of a particular

cost structure is well justified.

The robustness of your solutions to small changes in the scenario details should ideally be

explored through formal sensitivity analysis where the results of modifying parameters,

constraints and data are compared both qualitatively and quantitatively. That said, due to

the large number of variables and features in any given analysis, most sensitivity analyses

cannot look at everything, and therefore only what are considered key attributes are

examined.

Sensitivity analyses should include scenario details not commonly subject to

experimentation, such as the size and shape of planning units, the targets, extent of the

planning region, and different types of feature and cost data. Determining if the output from

different scenarios is similar will help assess the sensitivity of your solutions. Reporting the

sensitivity of solutions against different factors can be very useful to highlight the impact of

social or political constraints on solutions, or to help direct investment in the collection of

data. See the MGPH for more information on sensitivity analyses.

8.5 Com m unicat ing Results

Communicating Marxan with Zones results to a wide range of audiences is often a

challenging and laborious process, but it is essential to move from plans on paper to on-the-

ground actions. The following recommendations for presenting and communicating Marxan

with Zones results can facilitate this process.

Marxan with Zones User Manual 8-98

Ensure that the audience has a basic understanding of Marxan with Zones prior to presenting

results: The aim of introducing and explaining Marxan with Zones to stakeholders is not to

oversell or undersell Marxan, but to acknowledge its advantages and disadvantages, along

with its role as a decision support tool. When stakeholders are indirectly involved with

Marxan with Zones, it may not be necessary to mention it or to describe specific aspects of

the tool. In other cases, particularly when stakeholders are more directly involved in the

analysis or in evaluating outputs, they must clearly understand to some extent how Marxan

with Zones works.

Tailor presentation and communication strategies to the audience: Stakeholders will be

particularly attuned to the Marxan with Zones results in relation to their own interests. For

instance, scientific experts may want to know details on data inputs, assumptions, and

targets relating to their area of expertise. Stakeholders from different sectors may be less

interested in these details. Rather, they will want to know how their specific interests and

concerns were accounted for in planning and how the proposed zoning plans could impact

their interests. Thus, communication should be audience driven. Outputs should be

presented and explained in language that is meaningful to the audience. It is equally

important to ask for feedback that may identify additional data sources or considerations to

include in another iteration or revision.

Present multiple solutions: Practitioners should consider presenting more than one spatial

output or solution to a zoning problem. This will allow the audience to compare several

zoning options to address inherent concerns while meeting objectives.

Present maps of individual solutions together with selection frequency maps: Maps showing

the selection frequency (summed solutions) and individual solutions should be presented

side by side. This can help clarify differences between the two types of outputs and can help

avoid misinterpretations.

Present appropriate context: When presenting results, make sure to explain the meaning

behind the maps. Stakeholders will want to know how the results reflect their own interests

and compare this to how other stakeholders or other regions are affected. When

communicating with maps to a broader audience, be aware that you can lose control of the

communication process. In other words, maps can speak for themselves and are powerful

communication tools in and of themselves.

Prepare maps with embedded information, disclaimers, and appropriate symbology: When

mapping Marxan with Zones outputs, include information on the analysis settings, such as

the number of features, feature targets, zone targets. Maps dissociated from sufficient

information relevant to the generation of the outputs displayed can be misleading. As with

any map making, basic cartographic rules should be followed. Colour gradients can be used

Marxan with Zones User Manual 8-99

to display outputs, but it is important to be mindful of colour schemes for audience members

who may be colour blind or who only have access to grey-scale printers. Remember, that

much can be interpreted and misinterpreted from the colours, symbols and other

cartographic characteristics of maps. For example, solid lines on a map can invoke “lines

drawn in the sand”, whereas dotted lines or faded boundaries can relay areas that are open

for discussion. Finally, “work in progress” signs or “draft” watermarks embedded in maps

are very important in order to avoid outputs being misinterpreted as a ‘final result’ that

might cause stakeholders to react negatively if it looks like their areas of interest will be

heavily impacted.

Choose the right person to communicate results: In many cases, scientists or government

staff have been responsible for communicating with stakeholder groups. However, they may

not necessarily be the most appropriate for communicating Marxan with Zones results. The

right person to communicate results is someone who has a good relationship (i.e., trust) with

stakeholders; a fair understanding of stakeholder values, interests, and needs; and a proven

ability to communicate information in non-technical terminology. Hence, the right person

may vary based on the stakeholder groups present.

Marxan with Zones User Manual 9-100

9 Courses & Tra ining

In addition to this manual, there are courses and trainings available on using Marxan, Marxan

with Zones, and supporting software (e.g., ArcGIS, QGIS). Online tutorials on using Marxan

and certain supporting software are available at https://marxansolutions.org.

Courses and trainings are offered though different institutions and organizations, such as the

Pacific Marine Analysis and Research Association (PACMARA).

PacMARA is a charitable organization of science and planning professionals dedicated to

building and increasing capacity in marine and coastal planning. It offers technical and non-

technical courses on Marxan, Marxan with Zones, and other Marxan extensions (e.g., Marxan

Connect), along with courses on related concepts and topics (e.g., marine spatial planning).

PacMARA also provides facilitation, analysis, and support for managers, policymakers,

academics, and other members of the conservation community. Visit https://pacmara.org to

enquire about support service and upcoming courses/trainings.

https://marxansolutions.org/
https://pacmara.org/

Marxan with Zones User Manual 9-101

References

Marxan with Zones Software

Watts, M. E., Ball, I. R., Stewart, R. S., Klein, C. J., Wilson, K., Steinback, C., Lourival, R.,
Kircher, L., Possingham, H. P. (2009). Marxan with Zones: Software for optimal
conservation based land- and sea-use zoning. Environmental Modelling and Software,
24(12), 1513-1521.

Marxan with Zones Manual

Serra N, Kockel A, Williams, B., Watts, M., Klein, C., Stewart, R., Ball, I., Game, E., Possingham,

H., & McGowan J. (2021). Marxan with Zones User Manual. For Marxan with Zones

version 1.0.1 and above. The Nature Conservancy (TNC), Arlington, Virginia, United

States and Pacific Marine Analysis and Research Association (PacMARA), Victoria,

British Columbia, Canada.

Marxan Good Practice Handbook (MGPH)

Ardron, J.A., Possingham, H.P., and Klein, C.J. (eds). 2010. Marxan Good Practices Handbook,

Version 2. Pacific Marine Analysis and Research Association, Victoria, BC, Canada. 165

pages. www.pacmara.org.

Channel Island Example

Airame, S. 2005. Channel Islands National Marine Sanctuary: Advancing the Science and
Policy of Marine Protected Areas. Pages 91-124 in A. Scholz and D. Wright, editors.
Place Matters: Geospatial Tools for Marine Science, Conservation, and Management in
the Pacific Northwest. Oregon State University Press, Corvallis.

References Cited in Manual

Peer reviewed literature and reports using Marxan are compiled at The University of

Queensland’s Ecology Centre. An updated list can be obtained from the Marxan website:

http://www.uq.edu.au/marxan/index.html?page=80365&p=1.1.6.3

Adams, V. M., Pressey, R. L., & Álvarez-Romero, J. G. (2016). Using optimal land-use
scenarios to assess trade-offs between conservation, development, and social values.
PLoS ONE, 11(6), 1–20. https://doi.org/10.1371/journal.pone.0158350

Agostini, V. N., Margles, S. W., Schill, S. R., Knowles, J. E., & Blyther, R. J. (2010). Marine
Zoning in Saint Kitts and Nevis A Path Towards Sustainable Management of Marine
Resources. In The Nature Conservancy.
https://doi.org/10.1016/j.ocecoaman.2014.11.003

http://www.pacmara.org/
http://www.uq.edu.au/marxan/index.html?page=80365&p=1.1.6.3

Marxan with Zones User Manual 9-102

Ball, I. R., Possingham, H. P., & Watts, M. E. (2009). Marxan and relatives: Software for
spatial conservation prioritization. In A. Moilanen, K. A. Wilson, & H. P. Possingham
(Eds.), Spatial conservation prioritisation: Quantitative methods and computational
tools (pp. 185–210). Oxford University Press.

Connolly, D. J. (1990) “an improved annealing scheme for QAP”, European Journal of
Operations Research, 46, 93-100.

Domisch, S., Kakouei, K., Martínez-López, J., Bagstad, K. J., Magrach, A., Balbi, S., Villa, F.,
Funk, A., Hein, T., Borgwardt, F., Hermoso, V., Jähnig, S. C., & Langhans, S. D. (2019).
Social equity shapes zone-selection: Balancing aquatic biodiversity conservation and
ecosystem services delivery in the transboundaryDanube River Basin. Science of the
Total Environment, 656, 797–807. https://doi.org/10.1016/j.scitotenv.2018.11.348

Ehler, C., & Fanny, D. (2009). Marine spatial planning: a step-by-step approach towards
ecosystem-based management.

Fastré, C., Possingham, H. P., Strubbe, D., & Matthysen, E. (2020). Identifying trade-offs
between biodiversity conservation and ecosystem services delivery for land-use
decisions. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-
64668-z

Grantham, H. S., Agostini, V. N., Wilson, J., Mangubhai, S., Hidayat, N., Muljadi, A., Muhajir,
Rotinsulu, C., Mongdong, M., Beck, M. W., & Possingham, H. P. (2013). A comparison of
zoning analyses to inform the planning of a marine protected area network in Raja
Ampat, Indonesia. Marine Policy, 38, 184–194.
https://doi.org/10.1016/j.marpol.2012.05.035

Gurney, G. G., Pressey, R. L., Ban, N. C., Álvarez-Romero, J. G., Jupiter, S., & Adams, V. M.
(2015). Efficient and equitable design of marine protected areas in Fiji through
inclusion of stakeholder-specific objectives in conservation planning. Conservation
Biology, 29(5), 1378–1389. https://doi.org/10.1111/cobi.12514

Hermoso, V., Cattarino, L., Kennard, M. J., Watts, M., & Linke, S. (2015). Catchment zoning
for freshwater conservation: Refining plans to enhance action on the ground. Journal
of Applied Ecology, 52(4), 940–949. https://doi.org/10.1111/1365-2664.12454

JANIS (1997) Nationally agreed criteria for the establishment of a comprehensive, adequate
and representative reserve system for forests in Australia. A report by the Joint
ANZECC/MCFFA National Forest Policy Statement Implementation Subcommittee.
National forest conservation reserves: Commonwealth proposed criteria.
Commonwealth of Australia, Canberra.

Jumin, R., Binson, A., McGowan, J., Magupin, S., Beger, M., Brown, C. J., Possingham, H. P., &
Klein, C. (2018). From Marxan to management: Ocean zoning with stakeholders for
Tun Mustapha Park in Sabah, Malaysia. Oryx, 52(4), 775–786.
https://doi.org/10.1017/S0030605316001514

Marxan with Zones User Manual 9-103

Klein, C. J., Steinback, C., Watts, M., Scholz, A. J., & Possingham, H. P. (2010). Spatial marine
zoning for fisheries and conservation. Frontiers in Ecology and the Environment, 8(7),
349–353. https://doi.org/10.1890/090047

Kockel, A., Ban, N. C., Costa, M., & Dearden, P. (2019). Evaluating approaches for scaling-up
community-based marine-protected areas into socially equitable and ecologically
representative networks. Conservation Biology, 00(0), 1–11.
https://doi.org/10.1111/cobi.13368

Kockel, A., Ban, N. C., Costa, M., & Dearden, P. (2020). Addressing distribution equity in
spatial conservation prioritization for small-scale fisheries. PloS One, 15(5), e0233339.
https://doi.org/10.1371/journal.pone.0233339

Law, E. A., Bryan, B. A., Meijaard, E., Mallawaarachchi, T., Struebig, M. J., Watts, M. E., &
Wilson, K. A. (2017). Mixed policies give more options in multifunctional tropical
forest landscapes. Journal of Applied Ecology, 54(1), 51–60.
https://doi.org/10.1111/1365-2664.12666

Makino A, Klein CJ, Beger M, Jupiter SD, Possingham HP (2013) Incorporating Conservation
Zone Effectiveness for Protecting Biodiversity in Marine Planning. PLoS ONE 8(11):
e78986. doi:10.1371/journal.pone.0078986

Mazor, T., Possingham, H. P., Edelist, D., Brokovich, E., & Kark, S. (2014). The crowded sea:
Incorporating multiple marine activities in conservation plans can significantly alter
spatial priorities. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0104489

Mills, M., S. D. Jupiter, R. L. Pressey, N. C. Ban, and J. Comley. 2011. Incorporating
Effectiveness of Community-Based Management in a National Gap Analysis for Fiji.
Conservation Biology, 26,1155-1164.

Parker, S. R., Truscott, J., Harpur, C., & Murphy, S. D. (2015). Exploring a Resilience-Based
Approach to Spatial Planning in Fathom Five National Marine Park, Lake Huron,
Canada, Using Marxan with Zones. Natural Areas Journal, 35(3), 452–464.
https://doi.org/10.3375/043.035.0308

Pressey, R. L., & Bottrill, M. C. (2009). Approaches to landscape- and seascape-scale
conservation planning: convergence, contrasts and challenges. Oryx, 43(4), 464.
https://doi.org/10.1017/S0030605309990500

Reyers, B., O’Farrell, P. J., Nel, J. L., & Wilson, K. (2012). Expanding the conservation toolbox:
Conservation planning of multifunctional landscapes. Landscape Ecology, 27(8), 1121–
1134. https://doi.org/10.1007/s10980-012-9761-0

Ruiz-Frau, A., Kaiser, M. J., Edwards-Jones, G., Klein, C. J., Segan, D., & Possingham, H. P.
(2015). Balancing extractive and non-extractive uses in marine conservation plans.
Marine Policy, 52, 11–18. https://doi.org/10.1016/j.marpol.2014.10.017

Marxan with Zones User Manual 9-104

Watts, M.E., Steinback, C., Klein, C. (2008). User Guide: Applying Marxan with Zones. North
Central Coast of California Marine Study. University of Queensland and Ecotrust.

Watts, M. E., Ball, I. R., Stewart, R. S., Klein, C. J., Wilson, K., Steinback, C., Lourival, R.,
Kircher, L., & Possingham, H. P. (2009). Marxan with Zones: Software for optimal
conservation based land- and sea-use zoning. Environmental Modelling and Software,
24(12), 1513–1521. https://doi.org/10.1016/j.envsoft.2009.06.005

Watts, W., Steward, R., Segan, D., Kircher, L. 2011. Using the Zonae Cogito Decision Support
System. Applied Environmental Decision Analysis Centre. The Ecology Centre.
University of Queensland

Weeks, R., Russ, G. R., Bucol, A. A., & Alcala, A. C. (2010). Incorporating local tenure in the
systematic design of marine protected area networks. Conservation Letters, 3(6), 445–
453. https://doi.org/10.1111/j.1755-263X.2010.00131.x

Yates, K. L., Schoeman, D. S., & Klein, C. J. (2015). Ocean zoning for conservation, fisheries
and marine renewable energy: Assessing trade-offs and co-location opportunities.
Journal of Environmental Management, 152, 201–209.
https://doi.org/10.1016/j.jenvman.2015.01.045

Marxan with Zones User Manual 9-105

Appendix A- Troubleshooting

This appendix includes examples of common error messages encountered while running

Marxan with Zones, and a description of the possible causes and solutions.

Please note that this list is not exhaustive. If you encounter issues or error messages not

listed here, please contact us by sending an e-mail to marxancloud@gmail.com

A-1 Invalid input f ile (input.dat)

A-1.1 “Input f ile input.dat not found”

Error Message: The last thing Marxan with Zones shows is “input file input.dat not found".

Cause of Error Message: This occurs when you don't have an input.dat file containing the

Marxan settings in the same folder as your Marxan with Zones executable file (e.g.

MarxanZone_x64.exe).

A-1.2 “Entering in the data files; P lanning Unit f iles input/pu.dat has

not been found”

Error Message: The last thing Marxan with Zones shows is “Entering in the data files;

Planning Unit files input/pu.dat has not been found; Aborting Program. Press return to exit”.

Cause of Error Message: This error message can be due to different causes.

Marxan with Zones User Manual 9-106

 This occurs when the folder containing the input files (e.g. ‘Input’ folder) and specified

in input.dat via INPUTDIR is not included or does not match the actual folder name

(or directory) on your computer (e.g. the input.dat file contains the text "input" and

your computer has a folder named "input_scenario").

1. This occurs when your planning unit file name pu.dat specified in input.dat via

PUNAME is not included or does not match the actual planning unit file name on your

computer (e.g. the input.dat file contains the text "pu.dat" and your computer has a

file named "planningunit.dat").

A-1.3 “Missing planning un it id for line 1”

Error Message: The last thing Marxan shows is "Error: Missing planning unit id for line 1”

Cause of Error Message: This occurs when the heading containing the planning unit unique

identifier is different than “id”.

A-1.4 “Error: Cannot save to log file”

Error Message: The last thing Marxan with Zones shows is "Error: Cannot save to log file…”.

Cause of Error Message: This occurs when the folder for the output files (e.g. ‘Output’

folder) and specified in input.dat via OUTPUTDIR is not included or does not match the actual

folder name (or directory) on your computer (e.g. the input.dat file contains the text "input"

and your computer has a folder named "scenario_outputs").

Marxan with Zones User Manual 9-107

A-1.4 “Species file input/fea t.dat has not been found”

Error Message: The last thing Marxan with Zones shows is "Species file input/feat.dat has

not been found. Aborting Program. Press return to exit”.

Cause of Error Message: This occurs when your species file name spec.dat specified in

input.dat via SPECNAME is not included or does not match the actual species file name on

your computer (e.g. the input.dat file contains the text "spec.dat" and your computer has a

file named "spc.dat").

Marxan with Zones User Manual 9-108

A-1.5 “PU v Species file input / not found”

Error Message: The last thing Marxan with Zones shows is " PU v Species file input/ not

found. Aborting Program. Press return to exit”.

Cause of Error Message: This occurs when your planning unit versus species file name

‘puvspr.dat’ specified in input.dat via PUVSPRANME is not included or does not match the

actual species file name on your computer (e.g. the input.dat file contains the text

"puvspr.dat" and your computer has a file named "puspc.dat").

A-2 Invalid planning unit f ile (pu.dat)

A-2.1 Marxan with Zones crashes

No Error Messages given

Cause: The ‘put.dat’ file contains extra newline characters (e.g. blank spaces or extra lines)

at the end of the file and these need to be deleted. Or the pu.dat file has planning units ids

that are not present in any other file.

Marxan with Zones User Manual 9-109

Appendix B - Marxan with Zones

Objective Function and Algorithm s used

This appendix contains technical details about the way Marxan with Zones runs. It provides

supplementary information on the objective function and the algorithm underpinning

Marxan with Zones. While this information is not necessary to conduct basic runs, knowing

how the program runs will assist in understanding how the changes you make to different

parameters affect the results.

B-1 The Object ive Function

The objective function gives a value for each zoning configuration of planning units. This

means that a single planning unit or no planning units at all can be given an objective function

value. A configuration containing zero planning units would be cheap to implement but

would probably not meet the planning objectives and so the objective function value should

be very poor.

If we have an objective function which gives any possible zoning configuration a value, or

score, then we can compare any two zone configurations and say which one is better than

the other (according to the objective function). Because the objective function value can be

evaluated by a computer, the door is open to using a wide range of methods to automatically

create zone configurations that have good objective function values.

In Marxan with Zones, this objective function is used by the iterative improvement algorithm

and by simulated annealing. The objective function was designed with the aim to integrate it

with a simulated annealing optimiser but the two are distinct entities. Simulated annealing

is a general purpose optimiser and the objective function defines the constraints and

objectives for a zone configuration without explicitly defining how an optimal zonation will

be found.

The objective function consists of two main sections; the first is a measure of the ‘cost’ of the

zone configuration and the second a penalty for breaching various criteria. In its simplest

form, it is a combination of the economic cost of the zone configuration and a penalty for not

meeting all of the objectives, if any are unmet. These criteria can include a cap on the ‘cost’

of the zone configuration and always includes the target representation level for each

feature. As well as this is the optional measure of the fragmentation of the zone configuration

Marxan with Zones User Manual 9-110

and an optional cost threshold penalty. In this objective function, the lower the value the

better the zone configuration:

∑ 𝐶𝑜𝑠𝑡 + 𝐵𝐿𝑀 ∑ 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑃𝑈𝑠

 + ∑ 𝐹𝑃𝐹 × 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 + 𝐶𝑜𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑡)
𝐶𝑜𝑛

𝑉𝑎𝑙𝑢𝑒
𝑃𝑈𝑠

Cost is the sum of each cost measure multiplied by the value indicated in zonecost.dat file of

each of the PU within the zone configuration.

‘Boundary’ is the cost of the boundary surrounding each zone configuration. The constant

BLM is the boundary length multiplier, which will determine if the boundary cost will be

accounted for in the objective function. For example, if a value of 0 is given to BLM then the

boundary length is not included in the objective function.

The next term is a penalty given for not adequately representing a feature, summed over all

features for each zone. FPF stands for ‘feature penalty factor’ and is a weighting factor for

the feature which determines the relative importance for satisfying that particular feature’s

target. The penalty term is a penalty associated with each underrepresented feature. It is

expressed in terms of cost and boundary length and is roughly the cost and additional

modified boundary needed to adequately capture a feature which is not adequately

represented in the current zone configuration.

The cost threshold penalty is a penalty applied to the objective function if the target cost is

exceeded. It is a function of the cost and possibly the boundary of the system and in some

algorithms will change as the algorithm proceeds (which is the t in the above formula). This

penalty is also optional and can be excluded from the objective function.

B- 1.1 Cost of the Zone Conf iguration

The objective function that Marxan with Zones uses has the constraint that the cost of a zone

configuration is the linear combination of costs of all the planning units within the zone

configuration, broken down by zone.

B- 1.2 Boundary Length and Fragmentation

By including a boundary length term in the objective function we can apply a control on the

level of fragmentation in the zone configuration. In order to allow the boundary length to be

added to the cost measure, a multiplicative factor is used. This is because the boundary

length is most probably going to be in units which are different from the cost measure. Not

only are the units incompatible without a boundary length modifier, but the importance of

Marxan with Zones User Manual 9-111

compactness over cost is not immediately obvious. Changing the weights within the zone

boundary cost allow planners to explore this issue.

B- 1.3 Representation Requirements for Features

In the objective function, if the feature does not meet one or more of its requirements then

it will attract a penalty depending upon how far below representation it is and the relative

value of the feature to the other features.

B- 1.4 Feature Penalty

The feature penalty is the penalty given to a zone configuration for not achieving feature

targets. It is based on a principle that if a feature is below its target representation level, then

the penalty should be close to the cost for raising that feature up to its target representation

level. For example: if the requirement was to represent each feature by at least one instance

then the penalty for not having a given feature would be the cost of the least expensive

planning unit which holds an instance of that feature. If you were missing a number of

features, then you could produce a zone configuration that was fully representative by

adding the least expensive planning units containing each of the missing features. This would

not increase the objective function value for the zone configuration, in fact, if any of the

additional planning units had more than one of the missing features, then the objective

function value would decrease. It would appear to be ideal to recalculate the penalties after

each change had been made to the zone configuration. However, this would be time

consuming and it turns out to be more efficient to work with penalties which change only in

the simplest manner from one point in the algorithm to the next. A greedy algorithm is used

to calculate the cheapest way in which each feature could be represented on its own and this

forms the base penalty for that feature. Marxan with Zones adds together the cheapest

planning units which would achieve the representation target. This approach is described in

the following pseudo-code:

1. For each planning unit calculate a ‘cost per area’ value.

A. Determine how much of the target for the given feature is contributed by this

planning unit.

B. Determine the economic cost of the planning unit

C. Determine the boundary length of the planning unit

D. The overall cost is economic cost + boundary length x BLM x zone boundary cost

E. Cost-per-hectare is then the value for feature divided by the overall cost.

Marxan with Zones User Manual 9-112

2. Select the planning unit with the lowest cost-per-hectare. Add its cost to the running

cost total and the level of representation for the feature to the representation level

total.

A. If the level of representation is close to the target then it might be cheaper to pick

a ‘cheap’ planning unit has the required amount of the feature regardless of its

cost per area.

3. Continue adding up these totals until you have found a collection of planning units

which adequately represent the given feature.

4. The penalty for the feature is the total cost (including boundary length x BLM x

zoneboundarycost) of these planning units.

Thus, if one feature were completely unrepresented then the penalty would be the same as

the cost of adding the simple set of planning units, assuming that they are isolated from each

other for boundary length purposes. This value is quick to calculate but will tend to be higher

than optimum. Sometimes, there are more efficient ways of representing a feature than that

determined by a greedy algorithm, consider the following example.

Example 1: Feature A appears on a number of planning units, the best ones are:

Planning Unit Cost Amount of A represented

1 2 3

2 4 5

3 5 5

The target for A is 10 units. If we use the greedy algorithm we would represent this with

planning units 1, 2, and 3 (selected in that order) for a total cost of 11.0 units. If we chose

only planning units 2 and 3, we would still adequately represent A, but our cost would be 9

units.

This example shows a simple case where the greedy algorithm does not produce the best

results. The greedy algorithm is rapid and produces reasonable results. The program will

tend to overestimate and never underestimate the penalties when using a greedy algorithm.

It is undesirable to have a penalty value which is too low because then the objective function

might not improve by fully representing all features. If there are some features which need

not be fully represented, this should be handled entirely by use of the feature penalty factor,

which is described below. It is not problematic to have penalties which are higher then they

absolutely need to be, sometimes it is desirable. The boundary cost for a planning unit in the

above pseudo-code is the sum of all of its boundaries. This assumes that the planning unit

Marxan with Zones User Manual 9-113

has no common boundaries with the rest of the zone configuration and hence will again tend

to overestimate the cost of the planning unit and the penalty.

The penalty is calculated and fixed in the initialization stage of the algorithm. It is applied in

a straight forward manner - if a feature has reached half of its target then it scores half of its

penalty. The problem with this is that you might find yourself in a situation where you only

need a small amount to meet a feature’s target, but that there is no way of doing this which

would decrease the objective value. If we take Example 1 once again, then the penalty for

feature A is 11 units. If you already have planning units 1 and 4 in the zone configuration,

then you have 9 units of the feature and the penalty is 11.0 x (10-9)/10 = 1.1 units. So the

feature attracts a penalty of 1.1 units and needs only 1 more unit of abundance to meet its

target. There is no planning unit with a cost that low - the addition of any of the remaining

planning units would cost the zone configuration much more than the gain in penalty

reduction.

This problem can be fixed by setting a higher FPF (Feature Penalty Factor) for all features.

The FPF is a multiplicative factor for each feature, described below.

It is possible that the target for a feature is set higher than can possibly be met. In Australia

where the JANIS (1997) requirements state that 15% of the pre-European area of each forest

ecosystem type should be protected, we can easily have targets which are larger than the

current area of a given forest ecosystem. Currently, when this is the case, the algorithm will

scale up the penalty so that if, for example, it costs 100 units to protect all of a given

ecosystem but that represents only half of the target, then the initial penalty will be 200 units.

This means that if you get half-way to your target then the penalty for that feature will be

half the maximum penalty, no matter how high the target or whether it is a feasible target.

B- 1.5 Feature Penalty Factor

The feature penalty factor (FPF) is a multiplicative factor which can be unique to each

feature. It is primarily based on the relative worth of that feature but it includes a measure

of how important it is to get it fully represented. The actual effect that it will have varies

between the methods which use the objective function. If it is below 1 then the algorithm

might refuse to add a planning unit to protect that feature if there are no other features on

the planning unit. An algorithm might fall slightly short in the representation of features,

getting close to, but not at or above, the target value. To ensure that each feature meets the

target it can sometimes be desirable to set the FPF at greater value than 1.

B- 1.6 Cost Threshold Penalty

Marxan with Zones User Manual 9-114

The cost threshold is an option which allows the user to cap the zone configuration to a set

cost + modified boundary length. This has been included to make it possible to look at a

reverse version of the problem. The reversal of the problem would be to find the zone

configuration which has the best representation for all features constrained by a maximum

cost. It works by applying a penalty if the given threshold value is exceeded.

The penalty is the amount by which the threshold is exceeded multiplied by the cost

threshold penalty. The penalty depends upon the stage of the annealing algorithm (how far

into the annealing process the system is given as a proportion). The multiplier is:

𝐶𝑜𝑠𝑡 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑣𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × (𝐴𝑒−𝑏𝑡 − 𝐴)

Here t is the time during the run and varies between 0 and 1. A and B are control parameters.

B controls how steep the curve is (A high B will have the multiplier varying little until late in

the run). A controls the final value. A high A will penalize any excess of the threshold greatly,

a lower A might allow the threshold to be slightly exceeded. The multiplier starts at 0 when

t is zero. Both A and B require some experimentation to set. The cost threshold penalty is

built into the objective function and hence will apply to the annealing module along with the

iterative improvement module.

B-2 Algorithm s Method

There are two basic algorithms that can be used to formulate a solution in Marxan with

Zones: simulated annealing and iterative improvement. Each of these algorithms can be used

alone or in combination with each other. The run mode selected in the input parameter file

determines which algorithm, or combination of algorithms, is used to formulate a solution in

Marxan with Zones.

B- 2.1 Simulated Annealing

Simulated annealing is based on iterative improvement with stochastic acceptance of bad

moves to help avoid getting stuck prematurely in a local minimum. The implementation used

in Marxan with Zones will run for a set number of iterations. For each iteration, a planning

unit is chosen at random and may or may not be already in the zone configuration. The

change to the value of the zone configuration - which would occur if this planning unit were

added or removed from the system - is evaluated just as it was with iterative improvement.

This change is combined with a parameter called the temperature and then compared to a

uniform random number. The planning unit might then be added or removed from the

system depending on this comparison.

The temperature starts at a high value and decreases during the algorithm. When the

temperature is high, at the start of the procedure, then both good and bad changes are

Marxan with Zones User Manual 9-115

accepted. As the temperature decreases the chance of accepting a bad change decreases until,

finally, only good changes are accepted. For simplicity, the algorithm should terminate

before it can only accept good changes and the iterative improvement should follow it,

because at this point the simulated annealing algorithm behaves like an inefficient iterative

improvement algorithm.

There are two types of simulated annealing in Marxan with Zones. One is fixed schedule

annealing in which the annealing schedule (including the initial temperature and rate of

temperature decrease) is fixed before the algorithm commences. The other is adaptive

schedule annealing in which the algorithm samples the problem and sets the initial

temperature and rate of temperature decrease based upon its sampling.

B- 2.2 Adaptive Annealing Schedule

The adaptive annealing schedule commences by sampling the system a number of times

(number of iterations/100). It then sets the target final temperature as the minimum

positive (ie least bad) change which occurred during the sampling period. The maximum is

set according to the formula:

𝑇𝑖𝑛𝑖𝑡 = 𝑀𝑖𝑛 𝐶ℎ𝑎𝑛𝑔𝑒 + 0.1 × (𝑀𝑎𝑥 𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑀𝑖𝑛 𝑐ℎ𝑎𝑛𝑔𝑒)

This is based upon the adaptive schedule in (Conolly, 1990). Here, Tinit is the initial

temperature, the changes (min and max) are the minimum and maximum bad changes which

occurred. In our case a bad change is one which increases the value of the objective function

(ie a positive value).

B- 2.3 Fixed Annealing Schedule

With fixed schedule annealing the parameters which control the annealing schedule are fixed

for each implementation of the algorithm. This is done typically by some trials of the

algorithm with different parameters for a number of iterations which is shorter by an order

of magnitude to the number to be used in the final run. The parameters will often benefit by

being changed for longer runs but still based on the trials. The trials include looking at final

results and also tracking the progress of individual runs. The annealing schedules which

arise from the fixed schedule process are generally superior to the adaptive annealing

schedule. Adaptive annealing is advantageous as it does not require a skilled user to use the

algorithm and because it is quicker. It is faster in terms of the processing time required as

there is much less in the way of initial runs, it is considerably faster in terms of the time

which the user must apply in running the algorithm. For this reason it is taken as a major

algorithm to be examined here. Land-use designers and managers will tend to use the

standard options and automatic methods to a large extent so that the ability of adaptive

Marxan with Zones User Manual 9-116

annealing to design zone configuration is very useful, although obviously not definitively

important. Adaptive annealing is also important for broad investigations, tests and trials on

the system which would precede the more careful and detailed use of a fixed schedule

annealing algorithm.

B- 2.4 Setting a Fixed Annealing Schedule

When setting a fixed schedule the two parameters to change are the initial and final

temperature. The final temperature is set by choosing an appropriate value for the cooling

function. If the final temperature is too low then the algorithm will spend a lot of time at a

local minimum unable to improve the system and continuing to try. If the final temperature

is too high then much of the important annealing work will not be completed and the zone

configuration will largely be delivered by the iterative improvement schedule which follows

simulated annealing and finds a nearby local minimum ‘at random’. If the initial temperature

is too high then the system will spend too much time at high temperatures around the high

temperature equilibrium and less time where most of the annealing work is to be done.

Thus the best way to get the general feel for what the parameters should be is to run the

algorithm and sample the value of the current system regularly to see when the equilibrium

at various temperatures seems to be achieved, what they are and when the system no longer

changes or improves. This makes it easy to set a provisional final temperature and also gives

estimates at what reasonable initial temperatures might be. From here tests can be run

looking at the final output from multiple runs and different parameters at a much shorter

number of iterations.

Once good values have been found they need to be scaled up for the longer number of

iterations. This is because the length of time spent at lower or critical temperatures is

important and will drive the search for good parameters. Extending the length of the

algorithm will increase the time spent at these temperatures longer than is necessary. Thus

the method used is to keep the final temperature the same and increase the level of the initial

temperature so that it will spend a similar length of time at lower levels but allow it to search

the global space to a greater extent. For a short run it is often best to have the system running

at some critical temperature for as long as possible. For a longer run it is advantageous to

increase the range of temperatures used.

B- 2.5 Iterative Improvement

Iterative improvement is a simple optimization method. It has largely been supplanted by

simulated annealing but can still be profitably used to aid the other algorithms. There are

three basic types of iterative improvement which can be used in Marxan Z. They differ in the

Marxan with Zones User Manual 9-117

set of possible changes which are considered at each step. Each of them starts with a ‘seed’

solution. This can be any kind of zone configuration with some, all, or no planning units

allocated to zones. It is useful to use the final result from another algorithm such as simulated

annealing as the starting solution for iterative improvement.

In this case the iterative improvement algorithm is used solely to ensure that no simple

improvements are possible.

At each iteration, the algorithm will consider a random change to see if it will improve the

value of the objective function if that change were made. If the change does improve the

system then it is made, otherwise another, as yet untested, change is tested at random.

This continues until every possible change has been considered and none will improve the

system. The resulting zone configuration is a local minimum (or local optimum).

The three basic types of iterative improvement differ in the types of change that they will

consider. The simplest type is called ‘normal iterative improvement’ and the only changes

that are considered are adding or removing each planning unit from the zone configuration.

This is the same ‘move set’ as is considered by the greedy algorithm and by simulated

annealing.

The second type of iterative improvement is called ‘swap’ and it will randomly select

planning units, if the selected planning unit can improve the system by being added or

removed from it then this is done otherwise an exchange is considered. If the chosen

planning unit is already in a zone configuration then the changes considered are removing

that planning unit but adding another one somewhere else. If the chosen planning unit is not

in the zone configuration then the changes considered are adding this to the system but

removing one that is already in the system. Every possible ‘swap’ is considered in random

order, stopping when one is found which will improve the system. Because the number of

possible exchanges can be very large, this is a much slower option.

The third type is called ‘two step’, in this method as well as testing each planning unit (in

random order) to see if adding or removing it would improve the system, each possible

combination of two changes is considered. These changes include, adding or removing the

chosen planning unit in conjunction with adding or removing every other planning unit. The

number of such moves is even greater than in the ‘swap’ method, so that this method should

be used with care.

There is a fourth option which is to run the normal method first, to get a good local optimum

and then run the ‘two step’ method afterward. Because the number of improvements that

the ‘two step’ finds should be much smaller after a normal iterative improvement algorithm

has passed over the ‘seed’ solution this should be much faster than running the ‘two step’

method on its own.

Marxan with Zones User Manual 9-118

The main strength of iterative improvement is that the random element allows it to produce

multiple solutions. On average the solutions might be poor, but if it can produce solutions

quickly enough, then it may produce some very good ones over a great many runs. It is

theoretically possible to reach the global minimum by running iterative improvement

starting from either an empty zone configuration or a situation where every planning unit

starts in a randomly selected zone.

The main use of iterative improvement will still be to follow a different algorithm for some

fine-scale polishing up. This is particularly true for the ‘swap’ and ‘two step’ methods. Even

following another algorithm these might take long to run.

